簡易檢索 / 詳目顯示

研究生: 吳金黛
Wu, Chin-Tai
論文名稱: 網球正手截擊之下肢生物力學分析
Biomechanics of lower extremities during forehand volley in tennis
指導教授: 邱宏達
Chiu, Hung-Ta
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 77
中文關鍵詞: 運動生物力學切入動作網球截擊
外文關鍵詞: Biomechanics., Volley, Cutting movement
相關次數: 點閱:140下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為探討穿著不同鞋墊執行不同切入角度之截擊動作並側向回防時,下肢關節之生物力學化情形。實驗對象為六位網球運動員,近半年無下肢傷害且自願參與實驗。整個實驗過程為受試者右手持拍且穿著兩款鞋墊執行三種角度切入動作(0°、30° 與 60°),並且需作網球正手截擊動作,在擊球後立即側向並步回防。受試者穿著相同品牌、型號大小的網球鞋(型號: Adidas 012508, size US: 9.5)做此實驗動作,除原有鞋之鞋墊外,另外更換置入在前腳掌位置貼上黏性魔鬼氈之鞋墊,並穿著特殊的襪子以增加足底與鞋墊之間的摩擦力。此實驗利用一塊力板 (1000Hz, Kistler Type9281B) 與八台攝影機 (200Hz, HiRES Motion Analysis Corp., Santa, Rosa, CA, US) ,同步擷取受試者穿著兩種不同鞋墊執行三種切入動作時的運動學與動力學的資料。結果發現膝關節及初期階段的踝關節運動學參數上均無顯著差異,此可能是因為初期階段屬於任務導向的動作(必須成功擊球),因此造成受試者間調整機制不同。此外,在初期階段穿著黏性鞋墊執行 0° 切入動作有較高的左右與垂直方向地面反作用力,因此增加了初期階段的急停能力。在後期階段方面,穿著一般鞋墊執行 60° 切入有較大的踝關節外翻 (eversion) 與蹠屈 (plantar flexion) 角度和角速度,此現象可能與造成足部肌腱、韌帶受傷有關。穿著黏性鞋墊的運動學參數則無隨著切入角度增加而有所變化,而且穿著黏性鞋墊執行 60° 切入的外翻角度與角速度以及蹠屈角度角速度比一般鞋墊小,因此穿著黏性鞋墊增加在不同切入時的踝關節穩定度外,相對減小較大切入所造成的下肢傷害。由本研究結果可知,網球下肢的高傷害率應與後期推蹬動作有關,穿著減小腳在鞋子內滑動的鞋子應可以降低下肢傷害。

    The purpose of this study is to investigate effect of foot insole on lower extremities biomechanics during the cutting movement of forehand volley in tennis. Six male tennis players without history of lower limb injury volunteered for this investigation. Subjects perform three cutting angles movements (0°, 30° & 60°) to hit a dropping ball with a racket. Subjects are asked to wear a tennis shoe (Adidas 012508, size US: 9.5) under two conditions: with its insole and an adhesive insole. Eight-cameras vedio system (Motion Analysis Corp., Santa, Rosa, CA, US) was used to collect the data (different condition in cutting angles and insole) of 3D kinematics. One force platform (Kitsler, Type 9281B, 1000Hz) was used to determine the ground reaction force (GRF). During the experiment, both the motion analysis system and the Kitsler’s force platform are activated at the same time. The result shows that there is no significant difference in the kinematics parameters of the ankle during early stance. Because the movement during early stance is belong to a task-oriented skill, which would lead to different modifications by the subjects. Highest medio-lateral and vertical forces occurred while performing 0° cutting angle with adhesive insole, that increases the stop ability during early stance. The eversion angle, and angular velocity, plantarflexion angle and angular velocity increase with an increase in cutting angle with normal insole during late stance. According to the results, the subjects perform higher cutting angle with normal insole seem to have higher chance to get Achilles tendon injury. The risk factors of adhesive insole with 60° cutting angle are smaller than normal insole. Therefore, the subjects perform 60° cutting angle with adhesive insole has more ankle stability than normal insole during the late stance. Most tennis injuries in lower extremity seem to be caused by push-off during the late stance, and the reduction of foot slipping inside the shoe would improve the ankle stability.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表次 VI 圖次 VII 附錄圖 IX 附錄表 X 附錄資料 XI 第壹章 前言 1 第一節 問題背景 1 第二節 研究目的 3 第貳章 文獻探討 4 第一節 網球下肢傷害 4 第二節 側向動作對於踝關節之影響 6 第三節 不同切入方向對於膝、踝關節之影響 8 第參章 研究方法 14 第一節 研究對象 14 第二節 受測鞋 14 第三節 實驗方法 14 一、實驗條件 14 二、實驗動作 15 三、實驗設備 15 第五節 資料分析 19 第四章 結果 22 第一節 膝關節運動學 22 第二節 踝關節運動學 26 二、踝關節最大角度變化值 30 三、踝關節角速度峰值 32 四、背屈與蹠屈推蹬離開之運動學參數 34 五、切入角度 36 第四節 地面反作用力 37 一、 前後方向地面反作用力 38 二、 左右方向地面反作用力 38 三、 垂直方向地面反作用力 38 第伍章 討論與結論 41 第一節 膝關節運動學 41 第二節 初期階段踝關節與GRF的變化 42 第三節 後期階段踝關節與GRF的變化 46 第四節 結論 50 參考文獻 51

    王智宏、涂國誠、邱宏達(2007)。羽球選手阿基里斯腱受傷機轉之生物力學分析。大專體育學刊,9(3),97-105。
    王顯智、黃惠貞(2006)。阿基里斯腱的姊頗生理功能及可能的傷害因素。大專體育學刊,84,202-206。
    唐廷俊、楊明恩、相子元、邱宏達(1998)。球類運動下肢動作使用情形之探討
    。中華體育,12 (1),110-120。
    Besier, T. F., Llloyd, D. G., Cochrane, J. L. & Ackland, T. R. (2001) External loading of the knee joint during running and cutting. Med. Sci. Sports Exerc., 33, 7, 1168–1175.
    Bylak, J., & Hutchinson, M. R. (1998). Common Sports Injuries in Young Tennis Players. Sports Medicine, 26 (2), 119-132.
    Branthwaite, H.R., Payton, C.J. & Chockalingam, N. (2004). The effect of simple insoles on three-dimensional foot motion during normal walking. Clinical Biomechanics, 19, 972-977.
    Clement, D.B., Taunton, J.E., Smart, G.W., McNicol, K.L. (1981). A survey of overuse running injuries. The Physician and Sports Medicine, 9, 47-5
    Chandler, J. (1995). Exercise Training for Tennis. Clinics in Sports Medicine.
    Dayakidis, M. K., & Boudolos, K. (2006). Ground reaction force data in functional ankle instability during two cutting movements. Clinical Biomechanics, 21, 405–411.
    Ferrandis, R., García, A. C., Ramiro, J., Hoyos, J. V. & Vera, P. (1994). Rearfoot Motion and Torsion in Running: The Effects of Upper Vamp Stabilizers. Journal of Applied Biomechanics, 10, 28-42.
    Ford, K. R., Myer, G. D., Toms, H. E. & Hewett, T. E. (2005). Gender Differences in the Kinematics of Unanticipated Cutting in Young Athletes. Med. Sci. Sports Exerc., 37, 124-129.
    Freeman, M.A.R., Dean, M.R.E. & Henbam, I.W.F. (1965). The etiology and prevention of functional instability of the foot. J. Bone Joint Surg, B 47, 678–685.
    Gudibanda, A. & Wang,Y.T. (2005). Effect of the ankle stabilizing orthosis on foot and ankle kinematics during cutting maneuvers. Research in Sports Medicine, 13, 111-126.
    Girard, O., Eicher, F., Fourchet, F., Micallef, J.P., & Millet, G.P. (2007). Effects of the playing surface on plantar pressures and potential injuries in tennis. British Journal of Sports Medicine. 41(11), 733-738.
    ITF. Http://www.itftennis.com/abouttheitf/nationalassociations/index.asp.
    Houck, J. (2003). Muscle activation patterns of selected lower extremity muscles during stepping and cutting tasks. Journal of Electromyography and Kinesiology, 13, 545–554.
    Hreljac, A. (1998). Individual effects on biomechanical variables during landing in tennis shoes with varying midsole. Journal of Sports Sciences, 16, 531- 537.
    Hutchinson, M.R., Laprade, R. F., Burnett II, Q. M., Moss, R. & Terpstra, J. (1995). Injury surveillance at the USTA boy’s tennis championships; a 6-yr. study. Medicine and Science Sports Exercise, 7(6), 826-830.
    Kanamori, A., Woo, S., Ma, C., Zeminski, J., Rudy, T., Li, G., Livesay, G. (2000). The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 16 (6), 633 – 639.
    Kibler, W. B. & Safran, M. (2005). Tennis Injuries. Med Sport Sci, 48, 120–137.
    Lueth, S. (1983). Biomechanical analysis of short term pain in tennis. Unpublished doctoral dissertation, University of Calgary.
    Luethi, S. M., Frederick, E. C., Hawes, M. R. & Nigg, B. (1986). Influence of Shoe Construction on Lower Extremity Kinematics and Load During Lateral Movement in tennis. International journal of sport biomechanics, 2, 166-174.
    McLean, S. G., Lipfert, W. & Van Den Bogert, A. J. (2004). Effect of Gender and Defensive Opponent on the Biomechanics of Sidestep Cutting. Medicine Science in Sports Exercise, 36(6), 1008-1016.
    Nester, C.J.,van der Linden, M.L., & Bowker, P. (2003). Gait and Posture, 17, 180-187.
    Nigg, B. M., Frederick, E. C., Hawes, M.R. & Luethi, S.M. (1986). Factors Influencing Short-Term Pain and Injuries in Tennis. Internal Journal of Sport Biomechanics, 2, 156-165.
    Nigg, B. M., Luthi, S., & Bahlsen, A. (1989). The tennis shoe: biomechanical design criteria. In: The Shoe in Sport, B. Segesser and W. Pförringer (Eds.). London: Wolfe, pp. 39-46.
    Peng, C.Y., Shiang, T.Y., & Su, C.K. (2005). The study of a new designed adhesive sock and insole system. Paper presented at the 2005 Asia-Pacific Congress on Sport Technology: The Impact of Technology on Sports,Tokyo, Japan.
    Pluim, B. M. & Safran, M. (2004). From breakpoint to adventage. Includes descryiption, treatment, and prevention of all tennis injuries. Vista: USRSA.
    Pluim, B. M., Staal, J. B., Windler, G. E., & Jayanthi, N. (2006). Tennis injuries: occurrence, aetiology, and prevention. British Journal of Sports Medicine, 40, 415-423.
    Reinschmidt, C., Stacoff, A., & Stussi, E. (1992). Heel movement within a court shoes. Medicine Science Sports Exercise, 24(12), 1390-1395.
    Roetert, E. P. & Groppel, J. L. (2001). Biomechanics of the volley. ITF Coaching & Sport Science Review. 24.
    Ryan, L. (1994). Mechanical stability, muscle strength, and proprioception in the functionally unstable ankle. J. Physiother, 40, 41–47.
    Stacoff, A., Steger, J., Stussi, E. & Reinschmidt, C. (1996). Lateral stability in sideward cutting movements. Medicine & Science in Sports & Exercise, 28(3), 350-358.
    Stacoff, A., Reinschmidt, C., Nigg, B.M., va den Bogert, A.J., Lunddberg, A., Denoth, J., & Stussi, E. (2000). Effects of foot orthoses on skeletal motion during running. Clinical Biomechanics, 15, 54-64.
    Stiles, V. H. & Dixon, S. J. (2006). The Influence of Different Playing Surfaces on the Biomechanics of a Tennis Running Forehand Foot Plant. Journal of Applied Biomechanics, 22(1), 14-24.
    Stiles, V. & Dixon, S. (2007). Biomechanical response to systematic changes in impact interface cushioning properties while performing a tennis-specific movement. Journal of Sports Sciences, 1 – 11.
    Tik-Pui, D., Youlian, H & Jing, X. L. (2007). Cushioning and lateral stability functions of cloth sport Shoes. Sports Biomechanics, 6(3), 407–417.
    Van Gheluwe, B. & Deporte, E. (1992). Friction Measurement in Tennis on the Field and in the Laboratory. International Journal of Sports Biomechanics, 8, 48-61.
    Viitasalo JT, Kvist M (1983). Some biomechanical aspects of the foot and ankle athletes with and without shin splints. The American Journal of Sports Medicine, 11, 125-30.

    下載圖示 校內:2009-08-11公開
    校外:2009-08-11公開
    QR CODE