| 研究生: |
黃耘緯 Huang, Yun-Wei |
|---|---|
| 論文名稱: |
94 GHz CMOS射頻接收機整合與低LO功率次諧波混頻器之研製 Research on 94-GHz CMOS Millimeter-Wave Integrated RF Receiver and Low LO Power Sub-Harmonic Mixer |
| 指導教授: |
張志文
Chang, Chih-Wen |
| 共同指導教授: |
黃尊禧
Huang, Tsun-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 94-GHz 、W-band 、毫米波射頻接收機晶片 、毫米波 、CMOS |
| 外文關鍵詞: | 94-GHz, W-band,, RF receiver, millimeter-wave (MMW), CMOS |
| 相關次數: | 點閱:101 下載:41 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
作者:黃耘緯 指導教授:張志文 共同指導教授:黃尊禧
本論文晶片皆採用TSMC CMOS 90-nm製程實現並以on wafer或on wafer circuit measurement with PCB bias network形式量測。
第一部份為整合設計W-band CMOS射頻接收機晶片,其子電路包含低雜訊放大器、混頻器及振盪器。低雜訊放大器的架構採用共源極與共閘極形成之疊接架構,並在第一級與第二級電路中加入自製電感達到最佳雜訊匹配;混頻器採用雙平衡架構,藉由移除RF訊號轉導級及將主電路開關部分電晶體偏壓於弱反轉區減低功耗;振盪器方面因94 GHz起振條件嚴苛,故本次設計採用基頻47 GHz壓控振盪器,再經由倍頻器升頻至94 GHz,除了降低起振難度也可藉由倍頻器隔離放大器寄生電容對共振腔之影響。
第二部份94 GHZ CMOS低LO功率環型次諧波混頻器主要目的在於減少VCO設計困難度。由於實驗室整合VCO難以在高頻下同時提供符合混頻器轉換增益的最佳LO功率,導致須大量耗費額外功耗故與第二章混頻器不同改以LO頻率的兩倍與RF訊號做混合。另外LO訊號以閘級、源級交錯饋入結合弱反轉區偏壓技術不僅能增加一倍頻LO訊號洩漏至RF端之隔離度更可以在維持原本閘極饋入時轉換增益及LO功率表現下改善匹配難度,節省匹配電路消耗之面積亦利於未來整合。
第三部份47 GHz CMOS電流再利用型壓控振盪器配合第三章次諧波混頻器LO頻率與轉換增益所需最佳功率來設計,電路採用電流再利用型架構,希望在與第三章次諧波混頻器整合下,在整個收發機系統中能提供更多功耗餘裕給負責放大增益的低雜訊放大器和功率放大器,且此次利用自發性轉導匹配(Spontaneous transconductance match, STM)技巧利用中心電感偵測輸出振幅差動態地平衡交互耦合電晶體對的轉導值,改善振幅差的現象。
Author: Yun-Wei Huang Advisor: Chih-Wen Chang Co-Advisor: Tzuen-Hsi Huang
This thesis presents the design of W-band front-end receiver, 94 GHz CMOS low LO power ring sub-harmonic mixer and 47 GHz current-reuse VCO, which are implemented in the TSMC 90-nm GUTM technology.
The first part of the thesis is an integration design of a W-band front-end receiver, which consists of a low amplifier (LNA), a voltage-controlled oscillator (VCO),and a ring mixer. The LNA having a five stage cascode to enhance the performance of power gain. An inductance has been added between the cascode transistors of the first and second stage of the LNA to optimize noise matching. The mixer uses the double-balanced structure. The power consumption is reduced by removing the RF signal input transistor and using the weak inversion biasing technique. In terms of the VCO, due to its harsh start-up conditions at 94 GHz, the fundamental frequency 47 GHz VCO is selected for this design. Further, using a frequency multiplier increases the fundamental frequency to 94 GHz. In addition to reducing the difficulty of start-up conditions, the frequency multiplier is used to isolate the influence of the parasitic capacitance of the amplifier.
The second part is the design of a 94 GHz CMOS low LO power ring sub-harmonic mixer. The purpose of this design is to reduce the difficulty of VCO design. Because of the VCO in the previous part is difficult to provide the optimal LO power to drive the mixer at 94 GHz, we choose twice the LO frequency to mix with the RF signal. In addition, the LO signal is injected into gate and source alternately, which can reduce the difficulty of matching and save the area consumed by the matching circuit.
The third part is the design of a 47 GHz current-reuse VCO, which is designed on the basis of the mixer requirement. The low power design can be achieved by current-reuse technique. In the whole transceiver system, it can provide more power consumption margin to the low noise amplifier and power amplifier. Using the spontaneous transconductance match (STM) technique, the central-taped inductor is used to detect the output amplitude difference to dynamically balance the transconductance value of the cross-coupled transistor pair, so as to improve the phenomenon of the amplitude difference.
[1] 周建彰,94-GHz CMOS毫米波單混頻器次諧波射頻收發機晶片及具自動化洩漏迴波消除功能之60-GHz非接觸式人體呼吸心跳訊號CMOS射頻感測晶片系統設計研究,國立成功大學電腦與通信工程研究所博士論文,民國一百零八年七月。
[2] 劉家妤,應用於94-GHz CMOS射頻前端與整合GIPD天線之“混頻器優先”次諧波射頻接收機的毫米波混頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零九年。
[3] 劉三賢,應用於W-Band CMOS射頻前端收發機之47-及94-GHz毫米波壓控振盪器晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百一十年。
[4] 李思賢,94-GHz毫米波混頻器與W-band CMOS射頻收發機晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百一十年。
[5] 范宇軒,94-GHz CMOS電容性交互耦合中和技術功率放大器與電感性回授技術之功率放大器及應用於毫米波射頻接收機低雜訊放大器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百一十一年。
[6] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001
[7] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[8] J. -P. Hong and S. -G. Lee, “Low phase noise Gm-boosted differential gate-to-source feedback Colpitts CMOS VCO,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3079–3091, 2009.
[9] J. Hong and S. Lee, “Gm-Boosted Differential Drain-to-Source Feedback Colpitts CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 59, no. 7, pp. 1811-1821, July 2011.
[10] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[11] Zhipeng Li, Hongyun Huang and Jingfu Bao, "Colpitts oscillator phase noise analysis based on analytical multi-harmonics model," 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, 2013, pp. 365-368.
[12] M. H. Kashani, R. Molavi, and S. Mirabbasi, “A 2.3 mW 26.3-GHz gm-boosted differential colpitts VCO with 20% tuning range in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1556-1565, Feb. 2019.
[13] E. Monaco, M. Pozzoni, F. Svelto and A. Mazzanti, “Injection-Locked CMOS Frequency Doublers for μ-Wave and mm-Wave Applications,” IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1565-1574, Aug. 2010.
[14] S. Chu and C. Wang, “An 80 GHz Wide Tuning Range Push-Push VCO With gm-Boosted Full-Wave Rectification Technique in 90 nm CMOS,” IEEE Microwave and Components Letters, vol. 22, no.4, pp. 203-205, April 2012.
[15] N. Marchand, “Transmission-Line Conversion Transformers,” Electronics, vol. 17, no. 12, pp. 142-145, Dec. 1944.
[16] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York, NY, USA: Oxford Univ. Press, 2002.
[17] B. Huang, K. Lin and H. Wang, “Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3049-3059, Dec. 2009.
[18] Matthew Ozalas, Designing for Stability in high frequency circuits"Keysight Technologies, 2021, Published in USA, June 24, 2021, 3121-1255.EN
[19] J. Rollett, "Stability and Power-Gain Invariants of Linear Twoports," IRE Transactions on Circuit Theory, vol. 9, no. 1, pp. 29-32, March 1962.
[20] Struble and A. Platzker. “Instabilities Diagnosis and the Role of K in Microwave Circuits”, IEEE 1993.
[21] RD Middlebrook: “Measurement of Loop Gain in Feedback Systems”, Int.J. Electronics, 1975.
[22] P.J. Hurst, “Exact Simulation of Feedback Circuit Parameters”. IEEE Trans. On Circuits and Systems, 1991.
[23] H. Su, R. Hu and C. Wu, "A 78 - 102 GHz Front-End Receiver in 90 nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 9, pp. 489-491, Sept. 2011.
[24] S. Shahramian, Y. Baeyens, N. Kaneda and Y. Chen, "A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link," IEEE Journal of Solid-State Circuits, vol. 48, no. 5, pp. 1113-1125, May 2013.
[25] F. Golcuk, T. Kanar and G. M. Rebeiz, "A 90 - 100-GHz 4 x 4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3099-3114, Aug. 2013.
[26] A. Natarajan, A. Valdes-Garcia, B. Sadhu, S. K. Reynolds and B. D. Parker, "W-Band Dual-Polarization Phased-Array Transceiver Front-End in SiGe BiCMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 6, pp. 1989-2002, June 2015.
[27] F.Zhu et al, "A Broadband Low-Power Millimeter-Wave CMOS Downconversion Mixer with Improved Linearity," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 3, pp. 138-142, March 2014.
[28] 吳依靜,毫米波寬頻混頻器及高增益低功耗之次諧波混頻器研究,國立台灣大學電機資訊學院電信工程學研究所博士論文,民國107年2月
[29] Y-S Lin, G-H Li, “A W-Band Down-Conversion Mixer in 90 nm CMOS with Excellent Matching and Port-to-Port Isolation for Automotive Radars,” 2014 11th International Symposium on Wireless Communications Systems, Aug. 2014
[30] J. Jang, J. Oh, and S. Hong, “A 79 GHz gm-boosted sub-harmonic mixer with high conversion gain in 65 nm CMOS,” IEEE RFIC Symp. Dig., May 2015, pp. 11–14.
[31] P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui, and H. Wang, “A 30–65 GHz reduced-size modulator with low LO power using subharmonic pumping in 90-nm CMOS technology,” IEEE RFIC Symp. Dig., Jun. 2012, pp. 491–494
[32] Y.-T. Chou, Y.-H. Lin, and H. Wang, “A high image rejection E-band sub-harmonic IQ demodulator with low power consumption in 90-nm CMOS process,” IEEE Eur. Microw. Integr. Circuits (EuMIC),Oct. 2016, pp. 1417–1420.
[33] J-H Tsai, H-Y Yang, T-W Huang, and Huei Wang, “A 30–100 GHz Wideband Sub-Harmonic Active Mixer in 90 nm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 8, August 2008
[34] F. Zhu, K. Wang and K. Wu, "A Reconfigurable Low-Voltage and Low-Power Millimeter-Wave Dual-Band Mixer in 65-nm CMOS," IEEE Access, vol. 7, pp. 33359-33368, March 2019
[35] W. L. Chang, C. Meng and G. Huang, "V-band Sub-Harmonic Gate-Pumped Resistive Mixer With a 180 Hybrid Using an In-Phase Power Divider Merging With an Out-Of-Phase Marchand Balun," IEEE MTT-S International Microwave Symposium (IMS) , pp. 236-238, June 2019
[36] M. Wei, S. Chang and S. Huang, “An Amplitude-Balanced Current-Reused CMOS VCO Using Spontaneous Transconductance Match Technique,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 6, pp. 395-397, June 2009.
[37] Seok-Ju Yun, So-Bong Shin, Hyung-Chul Choi and Sang-Gug Lee, "A 1mW current-reuse CMOS differential LC-VCO with low phase noise," IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., 2005, pp. 540-616
[38] 李昂晨,毫米波CMOS壓控振盪器及低功耗多模態微波注入鎖定除頻器晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國106年7月
[39] J. Y. Jin, L. Wu, and Q. Xue, “A V-band CMOS VCO with digitally-controlled inductor for frequency tuning,” IEEE Trans.Circuits Syst. II, Exp. Briefs, vol. 65, no. 8, pp. 979–983,Aug. 2018.
[40] M. Haghi Kashani, A. Tarkeshdouz, R. Molavi, A. Sheikholeslami, E. Afshari, and S. Mirabbasi, “On the design of a high-performance mm-wave VCO with switchable triple-coupled transformer,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4450–4464,Nov. 2019.
[41] V. P. Trivedi and K. -H. To, “A Novel mmWave CMOS VCO with an AC-Coupled LC Tank,” IEEE Radio Frequency Integrated Circuits Symp. Dig., 2012, pp. 515-518.
[42] Y. -C. Wang, H. -K. Chiou and K. -H. Chien “A constant output power Q-band VCO with distributed cross-coupled-Gm core and A-mode pMOS varactors,” IEEE Asia-Pacific Microw. Conf., 2014, pp. 886-888.