簡易檢索 / 詳目顯示

研究生: 鄭亦茹
Zheng, Yi-Ru
論文名稱: CDCP1在 TGF-β1相關癌化作用的角色
Roles of CUB domain-containing protein 1 in TGF-β1-associated carcinogenesis
指導教授: 黃暉升
Huang, Huei-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 59
中文關鍵詞: 尿路上皮癌 CDCP1 TGF-β1 PAI-1 腫瘤幹細胞 抗藥性
外文關鍵詞: Urothelial carcinoma, , CDCP1, TGF-β1, PAI-1, Cancer stem cells, Drug resistance
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤微環境中由不同的細胞組成,其中腫瘤相關巨噬細胞可以產生各種因子影響微環境並促進腫瘤發展。TGF-β1可由脂肪內的巨噬細胞產生影響癌症進展,包含上皮間質轉化(EMT)、癌症幹細胞性質和抗藥性。CUB domain-containing protein 1(CDCP1)是一種穿膜蛋白。CDCP1在腫瘤細胞中表現較高。 全長CDCP1(flCDCP1)可被切割為切割形式CDCP1(clCDCP1)。近期研究發現,flCDCP1能夠增強TGF-β1調控基因的表達,因為其細胞外CUB結構域可以結合TGF-β1,然後增強TGF-β1誘導的下游信號傳遞。全長CDCP1(flCDCP1)可被切割為切割形式CDCP1(clCDCP1)。最近的研究發現,flCDCP1能夠增強TGF-β1信號傳遞的活性,因為其細胞外CUB結構域可以結合TGF-β1,增強TGF-β1下游訊息傳遞路徑。因此,在本篇研究我們比較高度表達flCDCP1及clCDCP1的尿路上皮癌細胞對腫瘤微環境中TGF-β1下游訊息傳遞路徑的影響。我們檢測PAI-的表現,PAI-1是一種絲氨酸蛋白酶抑制劑,能抑制CDCP1被切割並使flCDCP1表現上調。我們使用球狀形成實驗來檢測flCDCP1和clCDCP1之間的幹細胞特性。此外,我們還進行了藥物敏感性測試,研究flCDCP1在Gemcitabine抗藥性中的作用。結果顯示,高度表現flCDCP1可以促進癌細胞的幹細胞特性及抗藥性。綜上所述,flCDCP1可以與TGF-β1調控路徑互助,促進尿路上皮癌細胞惡化。

    The tumor microenvironment consists of various types of cells, including tumor cells, tumor stromal cells, and immune cells. Tumor-associated macrophage (TAM) is one of the important cells that secretes factors to alter the condition and promote tumor progression. a. Transforming growth factor-β1 (TGF-β1), which TAM can produce, plays a significant role in cancer progression, influencing processes such as epithelial–mesenchymal transition (EMT), cancer stemness, and drug resistance. The transmembrane CUB domain-containing protein 1 (CDCP1) is upregulated in multiple solid tumors. Full-length CDCP1 (flCDCP1) can be cleaved into cleavage form CDCP1 (clCDCP1). Recently, CDCP1 was found to enhance TGF-β1 target gene expression, as its extracellular CUB domain can bind to TGF-β1 and then enhance TGF-β1-induced downstream signaling. Therefore, we generate stable cell lines expressing flCDCP1 and clCDCP1 to compare their impacts on the downstream functions of TGF-β1 signaling in the tumor microenvironment (TME). This evaluation involves examining the expression of plasminogen activator inhibitor-1 (PAI-1). PAI-1 is a serine protease inhibitor that can inhibit the cleavage of CDCP1, leading to an increased expression of flCDCP1. The evaluation of stemness properties between flCDCP1 and clCDCP1 is conducted using the sphere formation assay. Moreover, a drug sensitivity assay was conducted to investigate the role of flCDCP1 in gemcitabine resistance. The results show that flCDCP1 promotes cancer stemness and gemcitabine resistance. Hence, we conclude that flCDCP1 cooperates with TGF-β1 signaling to enhance cancer progression in UC cells.

    Abstract I 摘要 II 誌謝 III Contents IV List of Appendix VI List of Abbreviations VII Introduction 1 Hypothesis 6 Materials and methods 7 Results 23 M2 phenotype macrophages expressed higher TGF-β1. 23 TGF-β1 treatment increased the expression of flCDCP1, PAI-1, and stemness-related markers in UC. 23 Overexpression of flCDCP1 in UC cells promotes cancer stemness. 24 Overexpression of flCDCP1 in UC cells promotes gemcitabine resistance. 25 Overexpression of flCDCP1 in UC cells promotes higher expression of TGF-β1 downstream targets. 26 Discussion 28 Figures 31 Figure 1. M2 phenotype macrophages expressed higher TGF-β1. 32 Figure 2. TGF-β1 treatment increased the expression of flCDCP1, PAI-1, and stemness-related markers in UC cells. 34 Figure 3. Overexpression of flCDCP1 in UC cells promotes cancer stemness. 36 Figure 4. Overexpression of flCDCP1 in UC cells promotes gemcitabine resistance. 39 Figure 5. Overexpression of flCDCP1 in UC cells promotes higher expression of TGF-β1 downstream targets. 41 Figure 6. Role of flCDCP1 in UC cells promotes cancer stemness, gemcitabine resistance, and TGF-β1 signaling. 42 References 43 Appendix 47 Appendix 1. TGF-β signaling pathway. 47 Appendix 2. The structure and pathway of CUB domain-containing protein 1. 48 Appendix 3. The model of CDCP1 interaction with TGF-β1 pathway. 49 Appendix 4. The metabolic pathway of gemcitabine in cells. 50

    1. Baghban, Roshangar, Jahanban-Esfahlan, et al., Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication Signaling 18 1-19 (2020)
    2. De Visser,Joyce, The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer cell 41 374-403 (2023)
    3. Chen, Song, Du, Gong, Chang,Zou, Tumor-associated macrophages: an accomplice in solid tumor progression. Journal of biomedical science 26 1-13 (2019)
    4. Zhang, Wang, Ji, et al., Macrophage polarization in the tumor microenvironment: emerging roles and therapeutic potentials. Biomedicine Pharmacotherapy 177 116930 (2024)
    5. Derynck,Budi, Specificity, versatility, and control of TGF-β family signaling. Science signaling 12 eaav5183 (2019)
    6. Ràfols, Adipose tissue: cell heterogeneity and functional diversity. Endocrinología y Nutrición 61 100-112 (2014)
    7. Hata,Chen, TGF-β signaling from receptors to Smads. Cold Spring Harbor perspectives in biology 8 a022061 (2016)
    8. Fabregat,Caballero-Díaz, Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Frontiers in oncology 8 357 (2018)
    9. Shaikh, Balaya, Dagamajalu, et al., A signaling pathway map of plasminogen activator inhibitor-1 (PAI-1/SERPINE-1): a review of an innovative frontier in molecular aging and cellular senescence. Cell Communication Signaling 22 544 (2024)
    10. Li, Wei, He, et al., Plasminogen activator inhibitor-1 in cancer research. Biomedicine Pharmacotherapy 105 83-94 (2018)
    11. Kubala, Punj, Placencio-Hickok, et al., Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer. Cell reports 25 2177-2191. e2177 (2018)
    12. Seoane,Gomis, TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harbor perspectives in biology 9 a022277 (2017)
    13. Katsuno, Lamouille,Derynck, TGF-β signaling and epithelial–mesenchymal transition in cancer progression. Current opinion in oncology 25 76-84 (2013)
    14. Weina, Wu, Knappe, et al., TGF‐β induces SOX 2 expression in a time‐dependent manner in human melanoma cells. Pigment Cell Melanoma Research 29 453-458 (2016)
    15. You, Ding,Rountree, Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor‐β. Hepatology 51 1635-1644 (2010)
    16. Zhuang, Shen, Yang, et al., TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics 7 3053 (2017)
    17. Pawlak,Blobe, TGF‐β superfamily co‐receptors in cancer. Developmental Dynamics 251 117-143 (2022)
    18. Glinka, Stoilova, Mohammed,Prud'homme, Neuropilin-1 exerts co-receptor function for TGF-beta-1 on the membrane of cancer cells and enhances responses to both latent and active TGF-beta. Carcinogenesis 32 613-621 (2011)
    19. Tazat, Hector-Greene, Blobe,Henis, TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling. Molecular biology of the cell 26 3535-3545 (2015)
    20. Yang, Shi, Zhao, et al., Targeting cancer stem cell pathways for cancer therapy. Signal transduction targeted therapy 5 8 (2020)
    21. Zhao, Li,Zhang, Stemness-related markers in cancer. Cancer translational medicine 3 87 (2017)
    22. Li, Wang, Ajani, Song,Signaling, Drug resistance and Cancer stem cells. Cell Communication Signaling 19 1-11 (2021)
    23. Shibue,Weinberg, EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature reviews Clinical oncology 14 611-629 (2017)
    24. Hayashi, Kurata,Nakagawa, Gemcitabine: efficacy in the treatment of advanced stage nonsquamous non-small cell lung cancer. Clinical Medicine Insights: Oncology 5 CMO. S6252 (2011)
    25. de Sousa Cavalcante,Monteiro, Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. European journal of pharmacology 741 8-16 (2014)
    26. Zhang, Duan, Zhao, et al., Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-κB/STAT3 signaling cascade. Cancer letters 382 53-63 (2016)
    27. Singh, Shishodia, Koul,treatment, Pancreatic cancer: genetics, disease progression, therapeutic resistance and treatment strategies. Journal of cancer metastasis treatment 7 60 (2021)
    28. Khan, Kryza, Lyons, He,Hooper, The CDCP1 signaling hub: a target for cancer detection and therapeutic intervention. Cancer research 81 2259-2269 (2021)
    29. Kryza, Khan, Lovell, et al., Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1. Nature chemical biology 17 776-783 (2021)
    30. He, Wortmann, Burke, et al., Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCδ. Journal of Biological Chemistry 285 26162-26173 (2010)
    31. Wright, Arulmoli, Motazedi, et al., CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene 35 4762-4772 (2016)
    32. Qi, Gao, Li, et al., CDCP1: A promising diagnostic biomarker and therapeutic target for human cancer. Life sciences 301 120600 (2022)
    33. Liu, Tsai, Peng, Chang, Chang,Huang, CDCP1 (CUB domain containing protein 1) is a potential urine-based biomarker in the diagnosis of low-grade urothelial carcinoma. PloS one 18 e0281873 (2023)
    34. Saponaro, Flottmann, Eckstein, et al., CDCP1 expression is frequently increased in aggressive urothelial carcinoma and promotes urothelial tumor progression. Scientific Reports 13 73 (2023)
    35. Conze, Lammers, Kuci, et al., CDCP1 is a novel marker for hematopoietic stem cells. Annals of the New York Academy of Sciences 996 222-226 (2003)
    36. He, Davies, Harrington, et al., CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of β-catenin and E-cadherin. Oncogene 39 219-233 (2020)
    37. Predes, Cruz, Abreu,Mendes, CUB domain-containing protein 1 (CDCP1) binds transforming growth factor beta family members and increase TGF-β1 signaling pathway. Experimental Cell Research 383 111499 (2019)
    38. Samarakoon, Higgins, Higgins, Higgins,cardiology, TGF-β1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60c-src/EGFRY845 and Rho/ROCK signaling. Journal of molecular cellular cardiology 44 527-538 (2008)
    39. Casar, Rimann, Kato, Shattil, Quigley,Deryugina, In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene 33 255-268 (2014)
    40. Leroy, Shen, Strande, et al., CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases. Oncogene 34 5593-5598 (2015)
    41. Law, Ferreira, Davis, et al., CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Research 18 1-17 (2016)
    42. Wang, Wang, Chen, et al., Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ precision oncology 8 31 (2024)
    43. Singh, Mayengbam, Yaduvanshi, Wani,Bhat, Obesity programs macrophages to support cancer progression. Cancer research 82 4303-4312 (2022)
    44. Haase, Weyer, Immig, et al., Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 57 562-571 (2014)
    45. Scully, Ettela, LeRoith,Gallagher, Obesity, type 2 diabetes, and cancer risk. Frontiers in oncology 10 615375 (2021)
    46. Lee-Rueckert, Canyelles, Tondo, et al., Obesity-induced changes in cancer cells and their microenvironment: mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Seminars in cancer biology 93 36-51 (2023)
    47. Lee, Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity. Biochimica et Biophysica Acta -Molecular Basis of Disease 1864 1160-1171 (2018)

    無法下載圖示 校內:2030-06-03公開
    校外:2030-06-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE