| 研究生: |
魏士閎 Wei, Shih-Hung |
|---|---|
| 論文名稱: |
煤層氣地層之吸脫附及擴散機制對暫態壓力影響之研究 Study of Transient Pressure Behavior Affected by desorption and Diffusion Mechanisms in Coalbed Methane Reservoir |
| 指導教授: |
林再興
Lin, Zsay-Shing |
| 共同指導教授: |
謝秉志
Hsieh, Bieng-Zih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 煤層氣地層 、生產機制 、暫態壓力分析 |
| 外文關鍵詞: | Coalbed methane, Production mechanism, Transient pressure analysis |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
煤層氣地層為煤層中吸附著大量的天然氣。因為煤層氣地層特性為雙孔隙地層,且其生產機制包含有吸脫附、擴散及自然裂縫的達西流動。所以,煤層氣地層的暫態壓力行為與其地層特性及生產機制(吸脫附及擴散機制)相關。本研究目的是分析煤層氣地層在生產時的暫態壓力行為,以及研究暫態壓力資料而估算地層參數。所使用的暫態壓力分析方法,包含A-E解析法、Gerami典型曲線分析法、A-G典型曲線分析法、傳統均質地層暫態壓力分析法以及自然裂縫地層暫態壓力分析法。所估算的地層參數包含自然裂縫滲透率、自然裂縫孔隙率、Langmuir體積常數、擴散時間常數以及膚表因子。
由分析結果顯示,若使用各種暫態壓力分析方法分析煤層氣地層暫態壓力,A-E解析法,最適合分析煤層氣地層暫態壓力資料。若推求煤層氣地層參數,可估算出自然裂縫滲透率、自然裂縫孔隙率、Langmuir體積常數以及擴散時間常數。其中,本研究對Anbarci and Ertekin(1991)在A-E解析法中推求擴散時間常數的概念進行量化,而建立新的擴散時間準則(ΔpD≤ 0.12),可準確估算擴散時間常數。
若僅要簡單的推求煤層氣地層的自然裂縫滲透率,而不考慮地層中複雜的雙孔隙地層以及生產機制,使用傳統均質地層暫態壓力分析法進行煤層氣地層暫態壓力分析,即可得到良好的結果。
由於煤層氣地層的自然裂縫在初始狀況,一般皆充滿著水。因此,煤層氣地層在生產前期,首先會進行抽水降壓。當地層壓力逐漸下降,煤層氣會從煤基中脫附出來,並擴散到自然裂縫之中,最後再流到生產井進行生產,因此煤層氣產率會有逐漸增加的趨勢,此時可稱之為煤層氣的上升階段。當煤層氣產率逐漸上升到生產曲線的頂峰,而後隨著煤層氣的不斷生產,地層逐漸耗竭,而使地層壓力逐漸下降。此時,煤層氣產率也會逐漸下降,此階段則為煤層氣的下降階段。
The coalbed methane reservoirs (CBM) are adsorbed with a lage amount of natural gas and characterized by dual porosity system, and the production mechanisms are dominated by desorption, diffusion and natural fracture flow. Therefore, the CBM transient pressure behaviors will be affected by dual porosity system and production mechanisms. The purposes of this research are to study transient pressure behaviors affected by desorption and diffusion mechanisms in CBM. To analyze the transient pressure data, the methods used include A-E analytical method, Gerami type curve, A-G type curve, traditional well test method and nature fracture well test method.
The results show that A-E analytical method is most appropriate to analyze CBM transient pressure data, and the nature fracture permeability, nature fracture porosity, Langmuir volume constant and sorption time constant can be obtained. In order to estimate sorption time constant, the sorption time criteria ( )is developed in this study.
If only want to estimate the nature fracture permeability simply without considering dual porosity system and desorption and diffusion mechanisms in CBM reservoir, the traditional well test method would be an effective method.
In the study of production and pressure behavior of CBM two-phase reservoir, in initial condition, the pores of fracture are always filled with water. As the reservoir pressure decreases, water in pores of fracture is drained out to the wellbore. As the result, adsorbed gas is released and diffuses to nature fracture, and there will be an inclined trend of gas production rate. As the CBM reservoir depleted gradually, there will be a declined trend of gas production rate.
1. Agarwal, R.G.: Real Gas Pseudo-Time - A New Function for Pressure Buildup Analysis of MHF Gas Wells, paper SPE 8279 presented at the SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, Sep. 23-26, 1979.
2. Agarwal R. G., Gardner D. C., Kleinsteiber S. W., and Fussell D. D.: Analyzing Well Production Data Using Combined-Type-Curve and Decline-Curve Analysis Concepts, SPE Reservoir Evaluation & Engineering, Vol. 2, No. 5, p. 478-486, 1999.
3. Ahmed, T., and Mckinney, P.: Advanced Reservoir Engineering, Elsevier Science and Technology, Oxford, UK, 2005.
4. Al-Hussainy, R., Ramey, H.J., and Crawford, P.B.: The Flow of Real Gases Through Porous Media, Journal of Petroleum Technology, Vol. 18, No. 5, p. 624-636, 1966.
5. Aminian, K., Ameri, S. and Mohaghegh, S.: Development of Gas Production Type Curves for Coalbed Methane Reservoirs, West Virginia University, 2004.
6. Anbarci, K. and Ertekin, T.: A Comprehensive Study of Pressure Transient Analysis With Sorption Phenomena for Single-Phase Gas Flow in Coal Seams, paper SPE 20568 presented at the 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, LA, New Orleans, Sep. 23-26, 1990.
7. Anbarci, K. and Ertekin, T.: A Simplified Approach for In-Situ Characterization of Desorption Properties of Coal Seams, paper SPE 21808 presented at the Rocky Mountain Regional Meeting and Low-Permeability Reservoirs Symposium, Denver, Colorado, Apr. 15-17, 1991.
8. Bumb, A.C. and McKee, C.R.: Gas-Well Testing in the Presence of Desorption for Coalbed Methane and Devonian Shale, SPE Formation Evaluation, Vol. 3, No. 1, p. 179-185, 1988.
9. Chacon, A., and Tiab, D.: Effects of Stress on Fracture Properties of Naturally Fractured Reservoirs, paper presented at the 2007 SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, Apr. 15-18, 2007.
10. Chakhmakhchev, A.: Worldwide Coalbed Methane Overview, paper SPE 106850 presented at the Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, Apr. 1-3, 2007.
11. Chakhmakhchev, A. and Fryklund, B.: Critical Success Factors of CBM Development Implications of Two Strategies to Global Development, paper presented at 19th World Petroleum Congress, Spain, 2008.
12. Computer Modelling Group LTD.: GEM Help Manual, Computer Modelling Group (CMG) Ltd., Calgary, AB, 2012.
13. Dake, L.P.: Fundamentals of Reservoir Engineering, Elsevier Scientific Publishing Company, Amsterdam, 1978.
14. Dong, Z., Holditch, S.A., McVay, D.A. and Ayers, W.B.: Global Unconventional Gas Resource Assessment, paper SPE 148365 presented at the Canadian Unconventional Resources Conference, Calgary, Canada, Nov. 15-17, 2011.
15. Donohue, M. D., and Aranovich, G. L.: Classification of Gibbs adsorption isotherms, Advances in Colloid and Interface Science, 137-152, 1998.
16. Earlougher, R. C., Jr.: Advances in Well Test Analysis, Society of Petroleum Engineers of the AIME, Dallas, Texas, U. S. A., 1977.
17. Fekete Associates Inc.: CBM Help Manual, Fekete Associates Inc., Calgary, AB, 2012.
18. Gerami, S., Pooladi-Darvish, M., Morad, K., and Mattar, L.: Type Curves for Dry CBM Reservoirs With Equilibrium Desorption, paper presented at Petroleum Society’s 8th Canadian International Petroleum Conference, Calgary, Canada, Jun. 12-14, 2007.
19. Harrison, G.C. and Gordon, R.B.: Negative Decline Curves of Coalbed Degasification Wells, paper SPE 12874 presented at the SPE/DOE/GRI Unconventional Gas Recovery Symposium, Pittsburgh, PA, May 13-15, 1984.
20. International Union of Pure and Applied Chemistry: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure & Appl. Chem., Vol. 57, No. 4, p. 603-619, 1985.
21. Kolesar, J.E., Ertekin, T., Obut, S. T.: The Unsteady-State Nature of Sorption and Diffusion Phenomena in the Micropore Structure of Coal: Part 1 – Theory and Mathematical Formulation, SPE Formation Evaluation, Vol. 5, No. 1, p. 81-88, Mar., 1990a.
22. Kolesar, J.E., Ertekin, T., Obut, S. T.: The Unsteady-State Nature of Sorption and Diffusion Phenomena in the Micropore Structure of Coal: Part 2 – Solution. SPE Formation Evaluation, Vol. 5, No. 1, p. 89-97, Mar., 1990b.
23. Langmuir, I.: The Aadsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, Journal American Chemistry Society, Vol. 40, No. 9, p. 1361-1382, 1918.
24. Lee, W. J.: Well Testing, Society of Petroleum Engimeers of AIME, Dallas, Texas, U.S.A., 1982.
25. Masters, J.A.: Deep Basin Gas Trap, Western Canada. AAPG Bullein, Vol. 63, No. 2, p. 152, 1979.
26. MATLAB: Signal Processing Toolbox for Use with MATLAB User’s Guide, The Math Works Inc., Natick, Massachusetts, U.S.A., 668 pp, 2010.
27. Mavor, M.J., and Cinco-Ley, H.: Transient Pressure Behavior of Naturally Fractured Reservoir, paper SPE 7977 presented at the California Regional Meeting of the Society of Petroleum Engineers of AIME, Venture, California, Apr. 18-20, 1979.
28. Mohaghegh, S. and Ertekin, T.: A Type Curve Solution for Coal Seam Degasification Wells Producing Under Two-Phase Flow Conditions, paper SPE 22673 presented at the 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX, Oct. 6-9, 1991.
29. Mora, C.A. and Wattenbarger, R.A.: Comparison of Computation Methods for CBM Performance, Journal of Canadian Petroleum Technology, Vol. 48, No. 4, p. 42-48, 2009.
30. Rightmire C. T., Eddy G. W., and Kirr J. N.: Coalbed Methane Resource of the United States, The American Association of Peterleum Geologists, 1984.
31. Smith, D. M. and Williams, F. L.: Diffusional effects in the Recovery of Methane From Coalbeds, Society of Petroleum Engineers of AIME, p. 529-535, Oct. 1984.
32. Thararoop: Development of a Multi-Mechanistic, Dual-Porosity, Dual-Permeability Numerical Flow Model for Coalbed Methane Reservoirs Accounting for Coal Shrinkage and Swelling Effects, Department of Energy and Mineral Engineering, the Pennsylvania State University, 2010.
33. van Everdingen, A.F., and Hurst, W.: The Application of the Laplace Transformation to Flow Problems in Reservoirs, Petroleum Transactions, AIME 186, p. 305-324, 1949.
34. Warren, J.E. and Root, P.J.: The Behavior of Naturally Fractured Reservoirs, SPE Journal, Vol. 3, No. 3, p. 245-255, 1963.
35. Wei, X.R., Wang, G.X., Massarotto, P., Golding, S.D., and Rudolph, V.: A Review on Recent Advances in the Numerical Simulation for Coalbed-Methane-Recovery Proces, SPE Reservoir Evaluation & Engineering, Vol. 10, No. 6, p. 657–666, Dec., 2007.