| 研究生: |
鄭丞恩 Cheng, Cheng-En |
|---|---|
| 論文名稱: |
改質膨脹石墨應用於染料吸附之研究 Study on modified expanded graphite and the application for dye adsorption |
| 指導教授: |
陳盈良
Chen, Ying-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 204 |
| 中文關鍵詞: | 凝析石墨 、膨脹石墨 、吸附材料 、染料 、界面活性劑改質 |
| 外文關鍵詞: | kish graphite, expanded graphite, adsorbent, dye, surfactant modification |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展,合成染料被應用於紡織工業以外的許多產業,造成染料廢水的污染日益嚴重,因此開發有效的染料吸附材料是現今社會所關注的,煉鋼廠高爐集塵灰中含有凝析石墨,本研究先使用泡沫浮選法富集高爐集塵灰中之凝析石墨,並利用酸純化法將富集的凝析石墨純化,以獲得高純度之凝析石墨,使用化學氧化插層程序將凝析石墨製備成石墨插層化合物(graphite intercalation compound,GIC),並經過微波程序使其形成膨脹石墨(expanded graphite,EG),後續使用市面上常見的2種染料進行染料吸附實驗,藉此評估其處理染料污水的能力,此外,亦對EG進行改質,增加EG對染料的吸附效果。
本研究以天然石墨作為凝析石墨之對照組,透過元素分析(elemental analyzer,EA)與掃描式電子顯微鏡(scanning electron microscope,SEM)分析得知凝析石墨之碳含量與天然石墨相近,但凝析石墨表面較天然石墨粗糙且具有缺陷。本研究以 H2SO4做為插層劑;(NH4)2S2O8作為氧化劑以探討不同反應條件對比表面積之影響,經實驗結果發現,不論以天然石墨或凝析石墨作為原料,H2SO4:(NH4)2S2O8=3 mL:5 g皆為最適合之EG製備條件,此外,升高氧化插層溫度可以有效縮短氧化插層反應達到平衡的時間,在微波膨脹的過程中,過高的微波功率與過長的微波時間並無法使EG之比表面積出現明顯變化。由以上結果可歸納出在凝析石墨粒徑為0.150~0.300 mm、H2SO4:(NH4)2S2O8為3 mL:5 g、氧化插層溫度70℃、氧化插層時間1 min、微波功率700 W、微波時間40 s之實驗條件下,可獲得最佳之比表面積為32.46 m2/g。
在染料吸附試驗中,溶液pH對EG的吸附量有顯著的影響,經實驗後得知EG對酸性藍9(acid blue 9,AB9)與反應性藍 4(reactive blue 4,RB4)的最佳吸附pH分別為1、2,在最佳吸附pH的條件下,EG對二種陰離子型染料的吸附皆遵循擬二級動力學模型,且符合Langmuir等溫吸附模型,從等溫吸附模型的分析可得知,EG有利於吸附染料,吸附機制主要為染料中的苯環與EG表面產生?−?鍵互相吸引並單層堆疊於EG表面上,EG對AB9與RB4分別具有最大單層吸附量23.81、26.71 mg/g。
凝析石墨製備的膨脹石墨經濃度為0.45 g/L的十六烷基三甲基溴化銨(cetyltrimethylammonium bromide,CTAB)水溶液改質後,可產生1.06 g/g 的重量變化,改質膨脹石墨(modified expanded graphite,MEG)對AB9與RB4分別具有最大單層吸附46.51、48.54 mg/g。
綜合以上結果,凝析石墨從高爐集塵灰中富集後,可將其製備成為EG 並應用於處理染料污染問題,可作為天然石墨之替代原料,經改質之後可有效增加其吸附量,符合現今所提倡的資源再生及利用理念。
Synthetic dyes have been applied to many industries, leading to severe dye wastewater pollution. Development of effective dye adsorbent is a concern in contemporary society. The blast furnace dust from steel steelmaking plant contains kish graphite. In this study, kish graphite was prepared into a graphite intercalation compound (GIC) by a chemical oxidation intercalation process, and expanded graphite (EG) was subsequently produced using a microwave method. Dye adsorption experiments were conducted using two common dyes to evaluate its ability to treat dye wastewater. In addition, EG was modified by surfactant to increase its dye adsorption capacity. Following experiments, it was determined that the optimal specific surface area is 32.46 m²/g. This was achieved under the conditions where the particle size of kish graphite is 0.150-0.300 mm, H2SO4 : (NH4)2S2O8=3 mL:5 g, oxidation-intercalation temperature=70°C, oxidation-intercalation time=1 min, irradiation power=700 W, and irradiation time=40 s. After dye adsorption experiments, the optimal adsorption pH of acid blue 9 (AB9) and reactive blue 4 (RB4) are 1 and 2, respectively. The adsorption of two dyes conforms to the pseudo second-order kinetic model, and the isotherm fits the Langmuir model. EG has the maximum monolayer adsorption capacity (QL) of 23.81 and 26.71 mg/g for AB9 and RB4, respectively. Expanded graphite was modified by a 0.45 g/L aqueous solution of cetyltrimethylammonium bromide (CTAB) to form modified expanded graphite (MEG), MEG has the QL of 46.51 and 48.54 mg/g for AB9 and RB4, respectively. Combined with the experimental results, using MEG to adsorb dyes can protect the environment and reduce waste generation at the same time. In line with the concept of resource recycling and utilization.
1.Vojdani, A.; Vojdani, C. Immune reactivity to food coloring. Altern Ther Health Med 2015, 21 Suppl 1, 52-62. From NLM.
2.Chandanshive, V. V.; Kadam, S. K.; Khandare, R. V.; Kurade, M. B.; Jeon, B.-H.; Jadhav, J. P.; Govindwar, S. P. In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere 2018, 210, 968-976.
3.Samsami, S.; Mohamadizaniani, M.; Sarrafzadeh, M.-H.; Rene, E. R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection 2020, 143, 138-163.
4.Ashok, K.; Utkarsh, D.; Kaman, S.; Satya Prakash, G.; Mirza, S. J. B. Structure and Properties of Dyes and Pigments. In Dyes and Pigments, Raffaello, P. Ed.; IntechOpen, 2021; p Ch. 8.
5.El Harfi, S.; El Harfi, A. Classifications, properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science 2017, 3 (3), 00000-00003 N° 00003 (02017) 00311-00320.
6.Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering 2018, 6 (4), 4676-4697.
7.Adesanmi, B. M.; Hung, Y.-T.; Paul, H.; Huhnke, C. Comparison of dye wastewater treatment methods: A review. GSC Advanced Research and Reviews, 10 (2) 2022, 10 (2), 126.
8.Solayman, H. M.; Hossen, M. A.; Abd Aziz, A.; Yahya, N. Y.; Leong, K. H.; Sim, L. C.; Monir, M. U.; Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. Journal of Environmental Chemical Engineering 2023, 11 (3), 109610.
9.Al-Tohamy, R.; Ali, S. S.; Li, F.; Okasha, K. M.; Mahmoud, Y. A. G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety 2022, 231, 113160.
10.Wanyonyi, W. C.; Onyari, J. M.; Shiundu, P. M.; Mulaa, F. J. Effective biotransformation of Reactive Black 5 Dye Using Crude Protease from Bacillus Cereus Strain KM201428. Energy Procedia 2019, 157, 815 824.
11.Tian, F.; Guo, G.; Zhang, C.; Yang, F.; Hu, Z.; Liu, C.; Wang, S.-w. Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium. International Journal of Biological Macromolecules 2019, 123, 1062 1069.
12.Kishor, R.; Purchase, D.; Saratale, G. D.; Saratale, R. G.; Ferreira, L. F. R.; Bilal, M.; Chandra, R.; Bharagava, R. N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering 2021, 9 (2), 105012.
13.Sadri Moghaddam, S.; Alavi Moghaddam, M. R.; Arami, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials 2010, 175 (1), 651-657.
14.Bilińska, L.; Gmurek, M.; Ledakowicz, S. Textile wastewater treatment by AOPs for brine reuse. Process Safety and Environmental Protection 2017, 109, 420-428.
15.Amor, C.; Marchão, L.; Lucas, M. S.; Peres, J. A. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water 2019, 11 (2), 205.
16.Nishio, J.; Tokumura, M.; Znad, H. T.; Kawase, Y. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. Journal of Hazardous Materials 2006, 138 (1), 106-115.
17.Ahmad, A.; Das, S.; Ghangrekar, M. Removal of xenobiotics from wastewater by electrocoagulation: A mini-review. J Indian Chem Soc 2020, 97, 493-500.
18.Singh, S.; Srivastava, V. C.; Mall, I. D. Mechanism of Dye Degradation during Electrochemical Treatment. The Journal of Physical Chemistry C 2013, 117 (29), 15229-15240.
19.Greluk, M.; Hubicki, Z. Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions. Chemical Engineering Research and Design 2013, 91 (7), 1343-1351.
20.Marin, N. M.; Pascu, L. F.; Demba, A.; Nita-Lazar, M.; Badea, I. A.; Aboul-Enein, H. Removal of the Acid Orange 10 by ion exchange and microbiological methods. International Journal of Environmental Science and Technology 2019, 16, 6357-6366.
21.Zheng, Y.; Yao, G.; Cheng, Q.; Yu, S.; Liu, M.; Gao, C. Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination 2013, 328, 42-50.
22.Yang, C.; Xu, W.; Nan, Y.; Wang, Y.; Hu, Y.; Gao, C.; Chen, X. Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal. Journal of Colloid and Interface Science 2020, 562, 589-597.
23.Hosny, N. M.; Gomaa, I.; Elmahgary, M. G. Adsorption of polluted dyes from water by transition metal oxides: A review. Applied Surface Science Advances 2023, 15, 100395.
24.Al Kausor, M.; Sen Gupta, S.; Bhattacharyya, K. G.; Chakrabortty, D. Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: A review on current status of the art. Inorganic Chemistry Communications 2022, 143, 109686.
25.Kamranifar, M.; Naghizadeh, A. Montmorillonite nanoparticles in removal of textile dyes from aqueous solutions: study of kinetics and thermodynamics. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 2017, 36 (6), 127-137.
26.Metes, A.; Kovacević, D.; Vujević, D.; Papić, S. The role of zeolites in wastewater treatment of printing inks. Water Research 2004, 38 (14), 3373-3381.
27.Wang, S.; Zhu, Z. H. Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. Journal of Hazardous Materials 2006, 136 (3), 946-952.
28.Zou, W.; Bai, H.; Gao, S.; Li, K. Characterization of modified sawdust, kinetic and equilibrium study about methylene blue adsorption in batch mode. Korean Journal of Chemical Engineering 2013, 30, 111-122.
29.Su, Y.; Zhao, B.; Xiao, W.; Han, R. Adsorption behavior of light green anionic dye using cationic surfactant-modified wheat straw in batch and column mode. Environmental Science and Pollution Research 2013, 20, 5558-5568.
30.Malek, N.; Sihat, N.; Khalifa, M. A.; Kamaru, A. A.; Jani, N.; Sani, N. Adsorption of acid orange 7 by cetylpyridinium bromide modified sugarcane bagasse. Journal of Technology 2014, 78 (1-2), 97-103.
31.Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal 2013, 219, 499-511.
32.Salleh, M. A. M.; Mahmoud, D. K.; Karim, W. A. W. A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, 280 (1), 1-13.
33.Nabil, G. M.; El-Mallah, N. M.; Mahmoud, M. E. Enhanced decolorization of reactive black 5 dye by active carbon sorbent immobilized-cationic surfactant (AC-CS). Journal of industrial and engineering chemistry 2014, 20 (3), 994-1002.
34.Hoang, N. B.; Nguyen, T. T.; Nguyen, T. S.; Bui, T. P. Q.; Bach, L. G. The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution. Cogent Engineering 2019, 6 (1), 1584939.
35.JIAO, C.; WANG, H.; ZHANG, C.; WU, J.; LI, S.; XU, C.; LIU, T.; ZHANG, J.; LIN, A. Synthesis of expanded graphite using a low temperature furnace and its application in dyeing wastewater treatment. Journal of Beijing University of Chemical Technology 2015, 42 (5), 53.
36.Ghosh, A. K. Literature quest and survey on graphite beneficiation through flotation. Renewable and Sustainable Energy Reviews 2024, 189, 113980.
37.Xing, B.; Zhang, C.; Cao, Y.; Huang, G.; Liu, Q.; Zhang, C.; Chen, Z.; Yi, G.; Chen, L.; Yu, J. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Processing Technology 2018, 172, 162-171.
38.Liu, S.; Loper, C. R. Kish, a source of crystalline graphite. Carbon 1991, 29 (8), 1119-1124.
39.Katinonkul, W.; Lerner, M. M. Graphite intercalation compounds with large fluoroanions. Journal of Fluorine Chemistry 2007, 128 (4), 332 335.
40.Saikam, L.; Arthi, P.; Senthil, B.; Shanmugam, M. A review on exfoliated graphite: Synthesis and applications. Inorganic Chemistry Communications 2023, 152, 110685.
41.Xu, J.; Dou, Y.; Wei, Z.; Ma, J.; Deng, Y.; Li, Y.; Liu, H.; Dou, S. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)‐ion batteries. Advanced Science 2017, 4 (10), 1700146.
42.He, H.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chemical Physics Letters 1998, 287 (1), 53-56.
43.Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. The Journal of Physical Chemistry B 1998, 102 (23), 4477 4482.
44.Nakajima, T. Fluorine-carbon and fluoride-carbon materials. Chemistry, physics, and applications. In Fuel and Energy Abstracts, 1995; Vol. 5, p 337.
45.Giraudet, J.; Dubois, M.; Guérin, K.; Delabarre, C.; Hamwi, A.; Masin, F. Solid-State NMR Study of the Post-Fluorination of (C2.5F)n Fluorine−GIC. The Journal of Physical Chemistry B 2007, 111 (51), 14143-14151.
46.Guérin, K.; Pinheiro, J. P.; Dubois, M.; Fawal, Z.; Masin, F.; Yazami, R.; Hamwi, A. Synthesis and Characterization of Highly Fluorinated Graphite Containing sp2 and sp3 Carbon. Chemistry of Materials 2004, 16 (9), 1786-1792.
47.Li, Y.; Lu, Y.; Adelhelm, P.; Titirici, M.-M.; Hu, Y.-S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chemical Society Reviews 2019, 48 (17), 4655-4687, 10.1039/C9CS00162J.
48.Kong, Y.; Chen, X.; Ni, J.; Yao, S.; Wang, W.; Luo, Z.; Chen, Z. Palygorskite–expanded graphite electrodes for catalytic electro-oxidation of phenol. Applied Clay Science 2010, 49 (1), 64-68.
49.陈志刚; 张勇; 杨娟; 邱滔. 膨胀石墨的制备, 结构和应用. 江苏大学 学报: 自然科学版 2005, 26 (3), 248-252.
50.Gurzęda, B.; Kim, T. I.; Arsakay, M.; Choe, M.; Lee, S. H.; Lee, Z.; Min, S. K.; Ruoff, R. S. Electrochemical Formation of a Covalent Ionic Stage-1 Graphite Intercalation Compound with Trifluoroacetic Acid. Chemistry of Materials 2022, 34 (1), 217-231.
51.Iyo, A.; Ogino, H.; Ishida, S.; Eisaki, H. Dramatically Accelerated Formation of Graphite Intercalation Compounds Catalyzed by Sodium. Advanced Materials 2023, 35 (15), 2209964.
52.Cahen, S.; Vangelisti, R. Chemical vapor transport for intercalation reactions: Synthesis of a 1st stage DyCl3 graphite intercalation compound. Journal of Solid State Chemistry 2021, 299, 122185.
53.Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A. K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science 2011, 36 (5), 638-670.
54.Zhang, D.; Tan, C.; Zhang, W.; Pan, W.; Wang, Q.; Li, L. Expanded graphite-based materials for supercapacitors: A review. Molecules 2022, 27 (3), 716.
55.Xia, L.; Zhang, P.; Wang, R. Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 2010, 48 (9), 2538-2548.
56.Liu, T.; Zhang, R.; Zhang, X.; Liu, K.; Liu, Y.; Yan, P. One-step room temperature preparation of expanded graphite. Carbon 2017, 119, 544 547.
57.Tian, Y.; Zhang, N.; Liu, Y.; Chen, W.; Lv, R.; Ma, H. Adsorption performance of expanded graphite and its binary composite microbeads toward oil and dyes. Desalin. Water. Treat. 2020, 178, 283-295.
58.Sun, M.; Zhao, D.; Zhang, F.; Yu, Z.; Chen, Y.; Wang, Y.; Liu, Z. Expanded graphite and thermally reduced graphene oxide filled with NiCo2O4 for improve microwave absorption. Materials Chemistry and Physics 2023, 305, 127898.
59.Wei, T.; Fan, Z.; Luo, G.; Zheng, C.; Xie, D. A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 2009, 47 (1), 337-339.
60.Teplykh, A.; Bogdanov, S.; Dorofeev, Y. A.; Pirogov, A.; Skryabin, Y. N.; Makotchenko, V.; Nazarov, A.; Fedorov, V. Structural state of expanded graphite prepared from intercalation compounds. Crystallography Reports 2006, 51, S62-S66.
61.He, B.; Setterwall, F. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation. Energy Conversion and Management 2002, 43 (13), 1709 1723.
62.Zhang, Z.; Fang, X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management 2006, 47 (3), 303-310.
63.Wang, S.; Qin, P.; Fang, X.; Zhang, Z.; Wang, S.; Liu, X. A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications. Solar Energy 2014, 99, 283-290.
64.Li, W.; Han, C.; Liu, W.; Zhang, M.; Tao, K. Expanded graphite applied in the catalytic process as a catalyst support. Catalysis Today 2007, 125 (3), 278-281.
65.Shi, P.; Zhu, S.; Zheng, H.; Li, D.; Xu, S. Supported Co3O4 on expanded graphite as a catalyst for the degradation of Orange II in water using sulfate radicals. Desalination and Water Treatment 2014, 52 (16-18), 3384-3391.
66.Ding, X.; Wang, R.; Zhang, X.; Zhang, Y.; Deng, S.; Shen, F.; Zhang, X.; Xiao, H.; Wang, L. A new magnetic expanded graphite for removal of oil leakage. Marine Pollution Bulletin 2014, 81 (1), 185-190.
67.Yao, T.; Zhang, Y.; Xiao, Y.; Zhao, P.; Guo, L.; Yang, H.; Li, F. The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite. Journal of Molecular Liquids 2016, 218, 611-614.
68.Wang, G.; Sun, Q.; Zhang, Y.; Fan, J.; Ma, L. Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 2010, 263 (1), 183-188.
69.Tichapondwa, S. M.; Tshemese, S.; Mhike, W. Adsorption of phenol and chromium (VI) pollutants in wastewater using exfoliated graphite. 2018.
70.Yang, M.; Zhao, Y.; Sun, X.; Shao, X.; Li, D. Adsorption of Sn (II) on expanded graphite: kinetic and equilibrium isotherm studies. Desalination and Water Treatment 2014, 52 (1-3), 283-292.
71.Zhang, L.; Wang, Y.; Jin, S.; Lu, Q.; Ji, J. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions. Environmental technology 2017, 38 (20), 2629-2638.
72.Yin, G.; Sun, Z.; Gao, Y.; Xu, S. Preparation of expanded graphite for malachite green dye removal from aqueous solution. Microchemical Journal 2021, 166, 106190.
73.Liu, Y.; Li, M.; Emam Hassanien, R. H.; Wang, Y.; Tang, R.; Zhang, Y. Fabrication of shape-stable glycine water-based phase-change material using modified expanded graphite for cold energy storage. Energy 2024, 290, 130306.
74.Jin, H.; Ji, Z.; Yuan, J.; Li, J.; Liu, M.; Xu, C.; Dong, J.; Hou, P.; Hou, S. Research on removal of fluoride in aqueous solution by alumina modified expanded graphite composite. Journal of Alloys and Compounds 2015, 620, 361-367.
75.Wu, K.-H.; Huang, W.-C.; Hung, W.-C.; Tsai, C.-W. Modified expanded graphite/Fe3O4 composite as an adsorbent of methylene blue: Adsorption kinetics and isotherms. Materials Science and Engineering: B 2021, 266, 115068.
76.Tian, Y.; Ma, H.; Xing, B. Preparation of surfactant modified magnetic expanded graphite composites and its adsorption properties for ionic dyes. Applied Surface Science 2021, 537, 147995.
77.Zhao, M.; Liu, P. Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder. Desalination 2009, 249 (1), 331-336.
78.Yang, L.; Liu, H.; Deng, Q.; Zhou, Y. Z.; Zhang, Y. Z. Modification of expandable graphite and adsorption for methyl orange. Applied Mechanics and Materials 2014, 618, 81-85.
79.Li, Z.; Huang, Z.; Xie, N.; Gao, X.; Fang, Y.; Zhang, Z. Preparation of Al2O3-coated expanded graphite with enhanced hydrophilicity and oxidation resistance. Ceramics International 2018, 44 (14), 16256 16264.
80.Blackley, E.; Lai, T.; Odukomaiya, A.; Tabares-Velasco, P. C.; Wheeler, L. M.; Woods, J. Surface-Modified Compressed Expanded Graphite for Increased Salt Hydrate Phase Change Material Thermal Conductivity and Stability. ACS Applied Energy Materials 2023, 6 (17), 8775-8786.
81.Xu, C.; Wang, H.; Yang, W.; Ma, L.; Lin, A. Expanded graphite modified by CTAB-KBr/H 3 PO 4 for highly efficient adsorption of dyes. Journal of Polymers and the Environment 2018, 26, 1206-1217.
82.Zhou, Y.; Sun, W.; Ling, Z.; Fang, X.; Zhang, Z. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt. Industrial & Engineering Chemistry Research 2017, 56 (50), 14799-14806.
83.Zou, T.; Fu, W.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O. Energy 2020, 190, 116473.
84.Xin, Y.; Li, J.; Huang, K.; Liu, L.; Yang, R. Thermal characteristics enhancement of Na2HPO4⋅12H2O/expanded graphite form-stable composite phase change material by the cationic surfactant modification. Journal of Energy Storage 2022, 54, 105399.
85.Chen, Y.-L.; Chiang, W.-P.; Hsieh, P.-Y. Recovery of Kish Graphite from Steelmaking Byproducts with a Multi-Stage Froth Flotation Process. Recycling 2023, 8 (6), 92.
86.蕭鎮豪. (NH4)2S2O8-H2SO4系統下製備膨脹石墨並應用於柴油吸 附之研究. 2021.
87.Wang, S.; Zhu, Z. H. Effects of acidic treatment of activated carbons on dye adsorption. Dyes and Pigments 2007, 75 (2), 306-314.
88.Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochemistry 1999, 34 (5), 451-465.
89.Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. 1898. 90.Ahmad, A. A.; Hameed, B. H.; Aziz, N. Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of Hazardous Materials 2007, 141 (1), 70-76.
91.Benjelloun, M.; Miyah, Y.; Akdemir Evrendilek, G.; Zerrouq, F.; Lairini, S. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arabian Journal of Chemistry 2021, 14 (4), 103031.
92.Atun, G.; Hisarli, G.; Sheldrick, W. S.; Muhler, M. Adsorptive removal of methylene blue from colored effluents on fuller's earth. Journal of Colloid and Interface Science 2003, 261 (1), 32-39.
93.Foo, K. Y.; Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 2010, 156 (1), 2-10.
94.Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society 1916, 38 (11), 2221-2295.
95.Bingol, A.; Aslan, A.; Cakici, A. Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia rangiformis (L.)). Journal of Hazardous Materials 2009, 161 (2-3), 747-752.
96.Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science 2014, 209, 172-184.
97.Auxilio, A. R.; Andrews, P. C.; Junk, P. C.; Spiccia, L. The adsorption behavior of C.I. Acid Blue 9 onto calcined Mg–Al layered double hydroxides. Dyes and Pigments 2009, 81 (2), 103-112.
98.Gözmen, B.; Kayan, B.; Gizir, A. M.; Hesenov, A. Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods. Journal of Hazardous Materials 2009, 168 (1), 129-136.
99.Li, J.; Liu, R.; Ma, L.; Wei, L.; Cao, L.; Shen, W.; Kang, F.; Huang, Z. H. Combining multiple methods for recycling of Kish graphite from steelmaking slags and oil sorption performance of Kish-based expanded graphite. ACS omega 2021, 6 (14), 9868-9875.
100.Murugan, P.; Nagarajan, R. D.; Shetty, B. H.; Govindasamy, M.; Sundramoorthy, A. K. Recent trends in the applications of thermally expanded graphite for energy storage and sensors–a review. Nanoscale advances 2021, 3 (22), 6294-6309.
101.Goudarzi, R.; Motlagh, G. H. The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon 2019, 5 (10).
102.Li, J.-h.; Feng, L.-l.; Jia, Z.-x. Preparation of expanded graphite with 160 μm mesh of fine flake graphite. Materials Letters 2006, 60 (6), 746-749.
103.Tryba, B.; Morawski, A. W.; Inagaki, M. Preparation of exfoliated graphite by microwave irradiation. Carbon 2005, 43 (11), 2417-2419.
104.Hou, B.; Sun, H.-j.; Peng, T.-j.; Zhang, X.-y.; Ren, Y.-z. Rapid preparation of expanded graphite at low temperature. New Carbon Materials 2020, 35 (3), 262-268.
105.Sykam, N.; Jayram, N. D.; Rao, G. M. Exfoliation of graphite as flexible SERS substrate with high dye adsorption capacity for Rhodamine 6G. Applied Surface Science 2019, 471, 375-386.
106.Uhl, F. M.; Yao, Q.; Nakajima, H.; Manias, E.; Wilkie, C. A. Expandable graphite/polyamide-6 nanocomposites. Polymer Degradation and Stability 2005, 89 (1), 70-84.
107.Hampton, C.; Demoin, D.; Glaser, R. E. Vibrational spectroscopy tutorial: sulfur and phosphorus. University of missouri, fall 2010.
108.Luo, L.; Liu, B.; An, F. The pore structure of expanded graphite and its characterization, chemical Industry and Engineering Progress. Chemical Industry and Engineering Progress 2017, 36 (2), 611-617.
109.Li, J.-T.; Li, M.; Li, J.-H.; Sun, H.-W. Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation. Ultrasonics sonochemistry 2007, 14 (2), 241-245.
110.Siciliano, A.; Curcio, G. M.; Limonti, C.; Masi, S.; Greco, M. Methylene blue adsorption on thermo plasma expanded graphite in a multilayer column system. Journal of Environmental Management 2021, 296, 113365.
111.Bielawska, M.; Chodzińska, A.; Jańczuk, B.; Zdziennicka, A. Determination of CTAB CMC in mixed water+ short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 424, 81-88.
112.Wang, L.-C.; Ni, X.-j.; Cao, Y.-H.; Cao, G.-q. Adsorption behavior of bisphenol A on CTAB-modified graphite. Applied Surface Science 2018, 428, 165-170.
113.王会丽; 赵越; 马乐宽; 范鹏浩; 徐从斌; 焦春磊; 林爱军. 复合改 性膨胀石墨的制备及对酸性艳蓝染料的吸附. 高等学校化学学报 2016, 37 (2), 335-341.
校內:不公開