| 研究生: |
高國涵 Kao, Kuo-Han |
|---|---|
| 論文名稱: |
以形狀記憶合金驅動之仿生手設計與其影像伺服控制 Design and Visual Servo Control of a SMA Actuated Biomimetic Hand |
| 指導教授: |
田思齊
Tien, Szu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 形狀記憶合金 、仿生手 、影像伺服 |
| 外文關鍵詞: | Shape Memory Alloy, biomimetic hand, visual servo control |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要目的為設計以形狀記憶合金驅動之仿生手,並利用影像伺服控制使其指尖到達目標位置。本文中所設計之仿生手,其姿態由驅動各關節的形狀記憶合金的形變量所決定,因此控制形狀記憶合金的形變量即可控制仿生手的姿態。然而,存在形狀記憶合金之中的遲滯現象與環境溫度的不穩定導致其形變量控制的困難,因此我們採用inverse Preisach模型補償其遲滯現象,並使用基於參考模型的適應控制器,使形狀記憶合金的模型趨近於參考模型。在本文中的仿生手架構下我們無需量測形狀記憶合金的形變量,而是藉由影像偵測指尖的位置,並配合逆向運動學的模型計算出形狀記憶合金的形變量。最後,我們基於現有的形狀記憶合金之形變控制器,利用運動學及逆向運動學的模型與影像伺服控制結合,以實現我們對仿生手的定位控制。
The purpose of this thesis is to design a shape memory alloy(SMA) actuated biomimetic hand, and to achieve precision positioning of its fingers with visual servo
control. The posture of the biomimetic hand in this thesis is determined by deformations of SMA connected to each joints; therefore, controlling the deformations of SMAs will control the posture of the biomimetic hand. However, hysteresis in the SMA and the fluctuation of ambient uncertain temperature wake difficult to control the deformation of SMA. In order to control the deformation of SMA precisely, we use inverse Preisach model to compensate the hysteresis, and use a reference model based adaptive controller to make the performance of SMA close to the reference model. In this research, the deformations of the SMA were not measured directly. In contrast, we detect the position of fingertip from the image, and calculate the deformations of the SMAs with inverse kinematic model. At last, with the aid of kinematic and inverse kinematic model, the controller of the visual servo system for precision positioning of the biomimetic hand was integrated to our deformation of SMA.
[1] A.S. Brown. Why hands matter? Mechanical Engineering, 2008.
[2] A.K. Smith and J.S. Palmer. Robotic Equipment and Instrumentation. Pediatric Robotic Urology, 2009.
[3] V.R.C. Kode and M.C. Cavusoglu. Design and characterization of a novel hybrid actuator using shape memory alloy and dc micromotor for minimally invasive surgery applications. Ieee-Asme Transactions on Mechatronics, 8:371–381, 2007.
[4] S.C. Jacobsen, J.E. Wood, D.F. Knutti, and K.B. Biggers. The utah/mit dexterous hand: work in progress. International Journal of Robotics Research, 4:21–50, 1984.
[5] S.C Jacobsen, E.K. Inversen, D.F. Knutti, K.B. Johnson, and K.B. Biggers. Design of the utah/mit dextrous hand. IEEE Int. Conf. on Robotics and Automation, 3:1520–1532, 1986.
[6] M. Jagersand, O. Fuentes, and R. Nelson. Acquiring visual-motormodels for precision manipulation with robot hands. In Proceedings of the Fourth European Conference on Computer Vision, 2:603–612, 1996.
[7] M. Jagersand. Visual servoing using trust region methods and estimation of the full coupled visual-motor jacobian. In Proceedings of IASTED Applications of Control and Robotics, pages 105–108, 1996.
[8] K.J.D. Laurentis and C. Mavroidis. Mechanical design of a shape memory alloy actuated prosthetic hand. Technology and Health Care, 10:91–106, 2002.
[9] K.J.D. Laurentis and C. Mavroidis. Rapid fabrication of a non-assembly robotic hand with embedded components. Assembly Automation, 24:394–405, 2004.
[10] P.K. Allen, A.T. Miller, P.Y. Oh, and B.S. Leibowitz. Integration of vision, force and tactile sensing for grasping. Int. J. Intelligent Machines, 4:129–149, 1999.
[11] P.K. Allen, A.T. Miller, P.Y. Oh, and B.S. Leibowitz. Using tactile and visual sensing with a robotic hand. International Conference on Robotics and Automation, 1997.
[12] L.R. Lin and H.P. Huang. Ntu hand: A new design of dexterous hands. Journal of Mechanical Design, 120:282–292, 1998.
[13] P.J. Butterfaß, M. Fischer, M. Grebenstein, S. Haidacher, and G. Hirzinger. Design and experiences with dlr hand ii. World Automation Congress, 2004.
[14] Shadow Robot Company. Design of a dexterous hand for advanced clawar applications. Shadow Robot Company, 2003.
[15] C. Connolly. Prosthetic hands from touch bionics. Industrial Robot, 35:290–293, 2008.
[16] K. Ikuta. Micro/miniature shape memory alloy actuator. IEEE Int. Conf. On Robotics and Automation, 3:2156–2161, 1990.
[17] M. Bergamasco, F. Salsedo, and P. Dario. Shape memory alloy micromotors for direct-drive actuation of dexterous artificial hands. Sensors and Actuators, 17:115–119, 1989.
[18] K. Kuribayashi. A new actuator of a joint mechanism using tini alloy wire. International Journal of Robotics Research, 4:47–58, 1986.
[19] J. Ortin and L. Delaey. Hysteresis in shape-memory alloys. International Journal of Non-Linear Mechanics, 37:1275–1281, 2002.
[20] M. Kumon, I. Mizumoto, Z. Iwai, and A. Indou. Shape memory alloy actuator with simple adaptive control. International Journal of Innovative Computing, Information and Control, 4:429–429, 2007.
[21] K.H. Liang. Positioning and tracking control of sma based actuator. Master’s thesis, National Cheng Kung University, 2011.
[22] P.K. Levangie and C.C. Norkin. Joint Structure and Function: A comprehensive Analysis. Philadelphia, PA, USA: F.A Davis Company, 4th edition, 2005.
[23] V. Bundhoo. Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers. Master’s thesis, University of Mauritius, 1999.
[24] K.S.Fu, R.C.Gonzalez, and C.S.G.Lee. Robotics:Control,Sensing,Vision,and Intelligence. McGraw-Hill Book Compant, 1987.
[25] T.L.Wang. Kernel-based object tracking using bayesian framework. Master’s thesis, National Tsing Hua University, 2004.
[26] Y.J. Li. Utilizing the optical flow theory for automatically tracking and position homologous point in video sequences. Master’s thesis, National Cheng Kung University, 2003.
[27] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Pearson Education Taiwan Ltd, 2008.
[28] E. Zanaboni. One way and two way shape memory effect: Thermo-mechanical characterization of ni-ti wires. Master’s thesis, University of Pavia, 2008.
[29] P.J. Ko. Design,manufacturing and control of piezo-stage. Master’s thesis, National Cheng Kung University, 2010.
[30] K.J. Astrom and B. Wittenmark. Adaptive Control. Pearson Education Taiwan Ltd, 2006.
[31] S. Devasia. Should model-based inverse inputs be used as feedforward under plant uncertainty? IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 47:1865–1871, 2002.
[32] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in FORTRAN 77 : the art of scienti c computing. Cambridge University Press, 1992.