| 研究生: |
李家葳 Lee, Chia-Wei |
|---|---|
| 論文名稱: |
具非線性結構性照明強化之時域聚焦多光子激發顯微術在螢光影像研究 The Study of Fluorescence Imaging Using Nonlinear Structured-Illumination Enhanced Temporal Focusing Multiphoton Microscopy |
| 指導教授: |
陳顯禎
Chen, Shean-Jan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 廣視域多光子激發 、數位微型反射鏡元件 、結構性照明顯微術 、空間解析度 |
| 外文關鍵詞: | Widefield multiphoton excitation microscopy, digital micromirror device, structure illumination microscopy, spatial resolution |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
時域聚焦多光子激發顯微術(temporal focusing multiphoton excitation microscopy,TFMPEM)主要以鈦藍寶石雷射再生放大器超快雷射(Ti:sapphire regenerative amplifier)為激發光源(其重複率為10 kHz且脈衝能量在100 fs的脈衝寬度下高達400 μJ/pulse),加上繞射光柵、準值透鏡以及物鏡所構成的4f架構,以達到具縱向解析能力與面多光子激發,最後以高靈敏度的電子倍增電荷耦合元件(electron multiplying charge-coupled device,EMCCD)來取像,可得到幀速度高於100 Hz的大面積螢光影像。另外,因其空間解析度受限於光學繞射極限(diffraction limit),使得側向解析度大約侷限在數百奈米,而縱向解析度約在數個微米等級。為了突破此限制,線性/非線性結構性照明顯微術(linear/nonlinear structured-illumination microscopy,SIM/NSIM)可採用。
論文中利用數位微型反射元件(digital micromirror device,DMD)取代傳統光柵,同時作為繞射元件以及產生結構圖案,並探討激發圖案對TFMPEM之縱向解析度的影響。實驗中發現,若使用弦波結構圖形激發時,縱向解析度會隨著結構圖形空間頻率變差,從2.5 μm逐漸上升到3.2 μm,但若結構圖形之空間頻率高至系統無法接收時,縱向解析度又會變為原來的2.5 μm。故可以得知特殊的照射圖形在經過傅立葉轉換之後,若能夠控制物鏡後焦平面雷射的頻率分布,將有機會調變縱向解析度。另外,藉由NSIM提升空間解析度,其側向解析度由400 nm減至227 nm (提升1.76倍),並進一步以小鼠腦皮脂切片厚度定義我們能穿透的深度,藉由NSIM減少背景雜訊與散射光的優點,使目前可以觀察深度達到60 μm腦皮脂厚度下的200 nm螢光球影像。
In this thesis, a developed temporal focusing multiphoton excitation microscope (TFMPEM) in our laboratory utilized a Ti:sapphire regenerative amplifier as the excitation source and a diffraction grating, a collimating lens, and an objective lens to construct a 4f setup. Then, a high sensitivity electron multiplying charge-coupled device (EMCCD) to receive was used for imaging. Based on the above configuration, the ability of axial resolution and the multiphoton excitation area larger than 40×40 〖μm〗^2 at a frame rate faster than 100 Hz can be achieved. Due to the spatial resolution restricted by the diffraction limit, the lateral resolution is limited in hundreds of nanometers and the axial resolution is limited in few microns. To overcome this limitation, linear/nonlinear structured illumination microscopy (SIM/NSIM) has been adopted.
We use a digital micromirror device (DMD) to replace a traditional optical grating. As sinusoidal illumination patterns used to perform TFMPEM, the axial resolution was worse from 2.5 μm to 3.2 μm when the spatial frequency of the structured illumination pattern became higher. But if the spatial frequency of the structured structure illumination pattern was higher than the system’s cutoff spatial frequency, the axial resolution will recover to 2.5 μm. Also, the NSIM can enhance the lateral resolution from 400 nm to 227 nm (1.76 folds). Furthermore, mice brain cortex slices were utilized to test the penetration depth of the TFMPEM. Currently, the 200 nm fluorescence beads images under a 60 μm thick mouse brain cortex slice can be improved.
[1] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[2] F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932-940 (2005).
[3] D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468-1476 (2005).
[4] G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153-2159 (2005).
[5] A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105, 20221-20226 (2008).
[6] E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848-854 (2010).
[7] 鄭力中,廣視域多光子激發顯微術之開發與應用,國立成功大學光電科學與工程研究所碩士論文 (2010)。
[8] M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141-150 (2000).
[9] M. Goepper-Mayer, “Ober Elementaraktemit zwei Quantensprungen,” Annalen der Physik 9, 273-294 (1931).
[10] S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258-4272 (2006).
[11] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793-796 (2006).
[12] T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106, 22287-22292 (2009).
[13] M. G. Gustafsson, “Nonlinear structure-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005).
[14] L.-C. Cheng, C.-H. Lien, Y. D. Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. Xu, C. Y. Dong, and S.-J. Chen “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed Opt. Express 5, 2526-2536 (2014).
[15] M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957-4970 (2008).
[16] K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomed Opt. Express 4, 2396-2410 (2013).
[17] Daekeun Kim, Ultrafast Optical Pulse Manipulation in Three Dimensional-Resolved Microscopic Imaging and Microfabrication, PH.D. Thesis, MIT (2009).
[18] B. Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH (2002).
[19] E. Hecht, Optics, Addison Wesley (2002).
[20] J. W. Goodman, Introduction to Fourier Optics, Roberts & Company (2005).
[21] M. A. A. Neil, R. Juˇskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
[22] D. Lim, K. K. Chu, and J.Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819-1821 (2008).
[23] T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17, 021105 (2012).
[24] J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811-819 (2011).
[25] 鄭力中,藉由時域聚焦多光子激發顯微術之快速光學切片與超高解析影像,國立成功大學光電科學與工程研究所博士論文 (2014)。
[26] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205-209 (2013).