| 研究生: |
廖章棋 Liao, Zhang-Qi |
|---|---|
| 論文名稱: |
高折射係數Bound states in the continuum奈米共振腔與二維半導體之耦合 Light-Matter Coupling Between High-Index Bound States in the Continuum Nanocavities and Two-Dimensional Semiconductors |
| 指導教授: |
劉瑞農
Liu, Jui-Nung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 奈米共振腔 、奈米光子學 、過渡金屬二屬族化物 、二維半導體 、強耦合 |
| 外文關鍵詞: | Nanocavity, Nanophotonics, 2D semiconductor, dimensional transition metal dichalcogenide (TMDC), strong coupling |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過光學超穎表面 (metasurfaces) 增強二維材料中光-物質相互作用引起了許多人的關注。在這裡,本論文使用COMSOL Multiphysics®模擬軟體研究了二氧化鈦 (TiO2) 超穎表面中連續域束縛態 (Bound state in the continuum, BIC) 的特性,並改變超穎表面中的結構參數觀察quasi-BIC模態的變化。
接著本論文設計出TiO2超穎表面與單層 (monolayer) 二硫化鎢 (WS2) 的混合結構。本論文藉由調控TiO2超穎表面的不對稱參數α和TiO2奈米棒 (nanobars) 的高度來操縱quasi-BIC的共振特性,並且在近場強度與吸收光譜中都有觀察到明顯的Rabi分裂典型的反交叉模式提供了有效的策略來增強單層二為半導體中的光與物質交互作用。
The enhanced light-matter interactions in two-dimensional transition metal dichalcogenide (TMDC) monolayers using optical nanostructures have always attracted the attention in the field of optics and photonics. Here, we use numerical electromagnetics simulations to study bound state in the continuum (BIC) in titanium dioxide (TiO2) metasurfaces. We engineer BIC resonances of the optical metasurface by sculpting its structural geometries. Next, we study a hybrid resonant structure that is based on TiO2 metasurfaces and monolayer tungsten disulfide (WS2). By tuning spectral locations of the BIC resonances around the emitter resonance of WS2, clear signatures of the anti-crossing and Rabi splitting can be observed in the both far-field and near-field spectra. This hybrid strategy using dielectric high-Q resonances provides an alternative to the plasmonic counterpart for strong light-TMDC interactions.
1. Bohren, C. F.; Huffman, D. R., Absorption and scattering of light by small particles. John Wiley & Sons: 2008.
2. Link, S.; El-Sayed, M. A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B 1999, 103 (40), 8410-8426.
3. Christ, A.; Martin, O. J.; Ekinci, Y.; Gippius, N. A.; Tikhodeev, S. G., Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano letters 2008, 8 (8), 2171-2175.
4. Fan, J. A.; Wu, C.; Bao, K.; Bao, J.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Nordlander, P.; Shvets, G.; Capasso, F., Self-assembled plasmonic nanoparticle clusters. science 2010, 328 (5982), 1135-1138.
5. Kravets, V.; Schedin, F.; Grigorenko, A., Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Physical review letters 2008, 101 (8), 087403.
6. Chu, Y.; Schonbrun, E.; Yang, T.; Crozier, K. B., Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Applied Physics Letters 2008, 93 (18), 181108.
7. Zhou, W.; Odom, T. W., Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature nanotechnology 2011, 6 (7), 423-427.
8. Wen, J.; Wang, H.; Wang, W.; Deng, Z.; Zhuang, C.; Zhang, Y.; Liu, F.; She, J.; Chen, J.; Chen, H., Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano letters 2017, 17 (8), 4689-4697.
9. Kuhlicke, A.; Schietinger, S.; Matyssek, C.; Busch, K.; Benson, O., In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting. Nano letters 2013, 13 (5), 2041-2046.
10. Caldarola, M.; Albella, P.; Cortés, E.; Rahmani, M.; Roschuk, T.; Grinblat, G.; Oulton, R. F.; Bragas, A. V.; Maier, S. A., Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature communications 2015, 6 (1), 1-8.
11. Miroshnichenko, A. E.; Kivshar, Y. S., Fano resonances in all-dielectric oligomers. Nano letters 2012, 12 (12), 6459-6463.
12. Kivshar, Y.; Miroshnichenko, A., Meta-optics with Mie resonances. Optics and Photonics News 2017, 28 (1), 24-31.
13. Holloway, C. L.; Kuester, E. F.; Gordon, J. A.; O'Hara, J.; Booth, J.; Smith, D. R., An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine 2012, 54 (2), 10-35.
14. Hao, F.; Sonnefraud, Y.; Dorpe, P. V.; Maier, S. A.; Halas, N. J.; Nordlander, P., Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano letters 2008, 8 (11), 3983-3988.
15. Wu, C.; Khanikaev, A. B.; Adato, R.; Arju, N.; Yanik, A. A.; Altug, H.; Shvets, G., Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature materials 2012, 11 (1), 69-75.
16. Klein, M. W.; Enkrich, C.; Wegener, M.; Linden, S., Second-harmonic generation from magnetic metamaterials. Science 2006, 313 (5786), 502-504.
17. Miroshnichenko, A. E.; Flach, S.; Kivshar, Y. S., Fano resonances in nanoscale structures. Reviews of Modern Physics 2010, 82 (3), 2257.
18. Luk'yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T., The Fano resonance in plasmonic nanostructures and metamaterials. Nature materials 2010, 9 (9), 707-715.
19. Wu, C.; Arju, N.; Kelp, G.; Fan, J. A.; Dominguez, J.; Gonzales, E.; Tutuc, E.; Brener, I.; Shvets, G., Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nature communications 2014, 5 (1), 1-9.
20. Staude, I.; Miroshnichenko, A. E.; Decker, M.; Fofang, N. T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T. S.; Neshev, D. N.; Brener, I., Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS nano 2013, 7 (9), 7824-7832.
21. Koshelev, K.; Lepeshov, S.; Liu, M.; Bogdanov, A.; Kivshar, Y., Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Physical review letters 2018, 121 (19), 193903.
22. Koshelev, K.; Bogdanov, A.; Kivshar, Y., Engineering with bound states in the continuum. Optics and Photonics News 2020, 31 (1), 38-45.
23. Hsu, C. W.; Zhen, B.; Stone, A. D.; Joannopoulos, J. D.; Soljačić, M., Bound states in the continuum. Nature Reviews Materials 2016, 1 (9), 1-13.
24. von Neumann, J.; Wigner, E. P., Über merkwürdige diskrete Eigenwerte. In The Collected Works of Eugene Paul Wigner, Springer: 1993; pp 291-293.
25. Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.-Y.; Neshev, D. N.; Kivshar, Y. S.; Altug, H., Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360 (6393), 1105-1109.
26. Vabishchevich, P. P.; Liu, S.; Sinclair, M. B.; Keeler, G. A.; Peake, G. M.; Brener, I., Enhanced second-harmonic generation using broken symmetry III–V semiconductor fano metasurfaces. Acs Photonics 2018, 5 (5), 1685-1690.
27. Zhang, F.; Huang, X.; Zhao, Q.; Chen, L.; Wang, Y.; Li, Q.; He, X.; Li, C.; Chen, K., Fano resonance of an asymmetric dielectric wire pair. Applied Physics Letters 2014, 105 (17), 172901.
28. Bernhardt, N.; Koshelev, K.; White, S. J.; Meng, K. W. C.; Froch, J. E.; Kim, S.; Tran, T. T.; Choi, D.-Y.; Kivshar, Y.; Solntsev, A. S., Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Letters 2020, 20 (7), 5309-5314.
29. Tuz, V. R.; Khardikov, V. V.; Kupriianov, A. S.; Domina, K. L.; Xu, S.; Wang, H.; Sun, H.-B., High-quality trapped modes in all-dielectric metamaterials. Optics express 2018, 26 (3), 2905-2916.
30. Zhang, J.; MacDonald, K. F.; Zheludev, N. I., Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Optics express 2013, 21 (22), 26721-26728.
31. Campione, S.; Liu, S.; Basilio, L. I.; Warne, L. K.; Langston, W. L.; Luk, T. S.; Wendt, J. R.; Reno, J. L.; Keeler, G. A.; Brener, I., Broken symmetry dielectric resonators for high quality factor Fano metasurfaces. Acs Photonics 2016, 3 (12), 2362-2367.
32. Koshelev, K.; Tang, Y.; Li, K.; Choi, D.-Y.; Li, G.; Kivshar, Y., Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 2019, 6 (7), 1639-1644.
33. Li, Y.; Rao, Y.; Mak, K. F.; You, Y.; Wang, S.; Dean, C. R.; Heinz, T. F., Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano letters 2013, 13 (7), 3329-3333.
34. Qin, M.; Xiao, S.; Liu, W.; Ouyang, M.; Yu, T.; Wang, T.; Liao, Q., Strong coupling between excitons and magnetic dipole quasi-bound states in the continuum in WS2-TiO2 hybrid metasurfaces. Optics Express 2021, 29 (12), 18026-18036.
35. Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W., Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical review letters 2012, 108 (19), 196802.
36. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R., Recent advances in two-dimensional materials beyond graphene. ACS nano 2015, 9 (12), 11509-11539.
37. Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H. M.; Van Der Zande, A. M.; Chenet, D. A.; Shih, E.-M.; Hone, J.; Heinz, T. F., Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2, MoSe2, WS2, and WSe2. Physical Review B 2014, 90 (20), 205422.
38. Savona, V.; Andreani, L.; Schwendimann, P.; Quattropani, A., Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Communications 1995, 93 (9), 733-739.
39. Ye, Z.; Cao, T.; O’brien, K.; Zhu, H.; Yin, X.; Wang, Y.; Louie, S. G.; Zhang, X., Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513 (7517), 214-218.
40. Schneider, C.; Glazov, M. M.; Korn, T.; Höfling, S.; Urbaszek, B., Two-dimensional semiconductors in the regime of strong light-matter coupling. Nature communications 2018, 9 (1), 1-9.
41. Wilson, J. A.; Yoffe, A., The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics 1969, 18 (73), 193-335.
42. Liu, W.; Wang, Y.; Zheng, B.; Hwang, M.; Ji, Z.; Liu, G.; Li, Z.; Sorger, V. J.; Pan, A.; Agarwal, R., Observation and active control of a collective polariton mode and polaritonic band gap in few-layer WS2 strongly coupled with plasmonic lattices. Nano letters 2019, 20 (1), 790-798.
43. Khoury, C. G.; Norton, S. J.; Vo-Dinh, T., Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. Acs Nano 2009, 3 (9), 2776-2788.
44. Huang, Y.; Xu, H.; Lu, Y.; Chen, Y., All-dielectric metasurface for achieving perfect reflection at visible wavelengths. The Journal of Physical Chemistry C 2018, 122 (5), 2990-2996.
45. Devlin, R. C.; Khorasaninejad, M.; Chen, W. T.; Oh, J.; Capasso, F., Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences 2016, 113 (38), 10473-10478.
46. Purcell, E. M.; Torrey, H. C.; Pound, R. V., Resonance absorption by nuclear magnetic moments in a solid. Physical review 1946, 69 (1-2), 37.
47. Agio, M.; Cano, D. M., The Purcell factor of nanoresonators. Nature photonics 2013, 7 (9), 674-675.
48. Liu, J.-N.; Huang, Q.; Liu, K.-K.; Singamaneni, S.; Cunningham, B. T., Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling. Nano letters 2017, 17 (12), 7569-7577.
49. McMahon, J. M.; Henzie, J.; Odom, T. W.; Schatz, G. C.; Gray, S. K., Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Optics express 2007, 15 (26), 18119-18129.
50. Wood, R. W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1902, 4 (21), 396-402.
51. Sarrazin, M.; Vigneron, J.-P., Bounded modes to the rescue of optical transmission. Europhysics News 2007, 38 (3), 27-31.
52. Rayleigh, L., On the dynamical theory of gratings. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1907, 79 (532), 399-416.
53. Lamprecht, B.; Schider, G.; Lechner, R.; Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R., Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Physical review letters 2000, 84 (20), 4721.
54. Weisbuch, C.; Nishioka, M.; Ishikawa, A.; Arakawa, Y., Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters 1992, 69 (23), 3314.
55. Zheng, D.; Zhang, S.; Deng, Q.; Kang, M.; Nordlander, P.; Xu, H., Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2. Nano letters 2017, 17 (6), 3809-3814.
56. Li, H.; Qin, M.; Ren, Y.; Hu, J., Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2. Optics express 2019, 27 (16), 22951-22959.
57. Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H., Photonic-crystal exciton-polaritons in monolayer semiconductors. Nature communications 2018, 9 (1),
58. Cao, S.; Dong, H.; He, J.; Forsberg, E.; Jin, Y.; He, S., Normal-incidence-excited strong coupling between excitons and symmetry-protected quasi-bound states in the continuum in silicon nitride–WS2 heterostructures at room temperature. The Journal of Physical Chemistry Letters 2020, 11 (12), 4631-4638.
59. Liu, X.; Galfsky, T.; Sun, Z.; Xia, F.; Lin, E.-c.; Lee, Y.-H.; Kéna-Cohen, S.; Menon, V. M., Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics 2015, 9 (1), 30-34.
60. Zhang, Y.; Liu, W.; Li, Z.; Li, Z.; Cheng, H.; Chen, S.; Tian, J., High-quality-factor multiple Fano resonances for refractive index sensing. Optics letters 2018, 43 (8), 1842-1845
61. COMSOL Multiphysics. https://www.comsol.com