| 研究生: |
楊鎮豪 Yang, Chen-Hao |
|---|---|
| 論文名稱: |
鎳基182合金銲道於硫酸溶液中之應力腐蝕破裂行為 Stress Corrosion Cracking of Alloy 182 Weld in H2SO4 Solution |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 鎳基182合金 、控制電位 、硫酸 、應變速率 、應力腐蝕破裂(SCC) 、慢應變速率拉伸試驗(SSRT) |
| 外文關鍵詞: | applied potential, strain rate, H2SO4, Alloy 182, slow strain rate test |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要針對鎳基182合金銲道在常溫、常壓下,於空氣和硫酸溶液等環境中進行拉伸試驗,並對其微觀組織、敏化程度以及應力腐蝕破裂(stress corrosion cracking, SCC)行為進行探討。所探討的因素包括控制電位、應變速率、熱處理條件以及添加劑硫代乙醯胺(CH3CSNH2)之影響。
由SSRT結果顯示,未經熱處理(as-weld, AW)之鎳基182合金銲道於0.05M硫酸溶液中,控制在不同電位下,以應變速率8.3×10-7 s-1進行拉伸之試驗中,以活性轉鈍性的電位範圍下(-85及-150 mVSCE)具有較高之SCC敏感性。而於0.05M硫酸溶液中,在控制電位為-85 mVSCE下,以不同應變速率進行拉伸之試驗中,其SCC破裂敏感性隨著應變拉伸速率8.3×10-6s-1降低至8.3×10-8 s-1而提升。
由空氣中拉伸結果顯示,經消除應力(stress-relief, SR)處理之試片可能由於析出物的產生,形成析出硬化機制,而使得降伏強度(yielding stress, σy)和UTS略有提升,而經固溶(solution annealing, SA)處理之試片則是略微下降。而在0.05M硫酸溶液中,控制電位為-85 mVSCE下,以應變速率8.3×10-7 s-1進行拉伸之試驗顯示,經SR處理之試片具有較高之SCC敏感性,而經SA處理之試片則較無SCC敏感性。
由動電位極化試驗結果顯示,添加劑CH3CSNH2對鎳基182合金銲道具有抑制鈍化以及催化枝晶間腐蝕和晶界腐蝕之效果,且對電位-85mVSCE而言,所添加的CH3CSNH2會使得原硫酸溶液中的活性轉鈍性電位轉換成活性電位,而容易使材料在應力作用下,發生腐蝕主導的破裂,甚至可能會造成過度腐蝕現象。
Abstract
The effects of applied potential, strain rate, heat treatments and thioacetamide (CH3CSNH2) on the environmentally-assisted crack (EAC) or stress corrosion cracking (SCC) behavior of Alloy 182 weld in 0.05M sulfuric acid solution were investigated. Slow strain rate tests (SSRTs) were employed to evaluate the SCC resistance. The experimental results showed that Alloy 182 weld, without heat treatment, was most susceptible to EAC in the active-to-passive potential range. The SSRT results also demonstrated that, for the as-weld Alloy 182, the EAC resistance decreased with decreasing strain rate when the specimens were strained at -85mVSCE. Furthermore, in 0.05M H2SO4 solution and at -85mVSCE, the SSRT results showed that stress-relief (SR) heat treatment at 650℃ for 24h would cause an increase in the EAC susceptibility, where solution annealing (SA) at 1100℃ for 0.5h gave rise to an increase in EAC resistance as compared with that of the as-weld Alloy 182. The addition of CH3CSNH2 caused accelerated corrosion of all the Alloy 182 welds in 0.05M H2SO4 solution. Though an enhanced corrosion was observed, SCC was not observed with the addition CH3CSNH2 in the sulfuric acid solution.
陸、參考文獻
1. R. A. Page, “Stress Corrosion Cracking of Alloys 600 and 690 and Nos. 82 and 182 Weld Metals in High Temperature Water”, Corrosion, Vol. 39, No. 10, p. 409, 1983.
2. P. L. Andresen, L. M. Young, P. W. Emigh and R. M. Horn, “Stress Corrosion Crack Growth Rate Behavior of Ni alloys 182 and 600 in High Temperature Water”, Corrosion/2002, Paper No. 02510.
3. NRC Information Notice 2004-11: Cracking In Pressurizer Safety and Relief Nozzles and In Surge Line Nozzle, Nuclear Regulatory Commision Office of Nuclear Reactor Regulation, Washington, D. C. 20555, United States.
4. R. A. Page, “Stress Corrosion of I-182 Weld Meatl in High Temperature Water—The Effect of a Carbon Steel Couple”, Corrosion, Vol. 41, No. 6, p. 339, 1985.
5. A. McMinn and R. A. Page, “Stress Corrosion Cracking of Inconel Alloys and Weldments in High-Temperature—the Effect of Sulfuric Acid Addition”, Corrosion, Vol. 44, No. 4, p. 239, 1988.
6. D. D. Macdonald, h. Song, K. Makela and K. Yoshida, “Corrosion Potential Measurements on Type 304 SS and Alloy 182 in Simulated BWR Environments”, Corrosion, Vol. 49, No. 1, p. 8, 1993.
7. N. Saito, S. Tanaka and H. Sakamoto, “Effect of Corrosion Potential and Microstructure on the Stress Corrosion Cracking Susceptibility of Nickel-Base Alloys in High-Temperature Water”, Corrosion, Vol. 59, No. 12, p. 1064, 2003.
8. Sindo Kou, “Welding Metallurgy”, A Wiley-Interscience publication, p. 9, 1987.
9. D. Van Rooyen, “Review of the Stress Corrosion Cracking of Inconel 600”, Corrosion, Vol. 31, No. 9, No. 327, 1975.
10. G. S. Was and V. B. Rajan, “The Mechanism of Intergranular Cracking of Ni-Cr-Fe Alloys in Sodium Tetrathionate”, Metallurgical Transactions A, Vol. 18A, p. 1313, 1987.
11. W. E. Mayo, “Predicting IGSCC/IGA Susceptibility of Ni-Cr-Fe Alloys by Modeling of Grain Boundary Chromium Depletion”, Materials Science and Engineering A, Vol. 232, p. 129, 1997.
12. 吳宗峰,“鎳基600合金之敏化及電化學再活化特性研究”,國立成功大學材料科學及工程學系博士論文,2001。
13. W. T. Tsai, C. L. Yu and J. I. Lee, “Effect of heat treatment on the sensitization of Alloy 182 weld”, Scripta Materialia 53 (2005) 505-509.
14. N. E. Hakiki, S. Boudin, B. Rondont and M. Da Cunha Belo, “The Electronic Structure of Passive Films Formed on Stainless Steels”, Corros. Sci., Vol. 37, No. 11, p. 1809, 1995.
15. A. Kawashima, K. Asami and K. Hashimoto, “An XPS Study of Passive Films on Nickel and Alloy 600 in Acids”, Corros. Sci., Vol. 25, No.2, p. 1103, 1985.
16. K. Asami and K. Hashimoto, “An X-Ray Photo-Electron Spectroscopic Study of Surface Treatments of Stainless Steels”, Corros. Sci., Vol. 19, p.1007, 1979.
17. K. Varga, P. Baradlai, W. O. Barnard, G. Myburg, P. Halmos and J. H. Potgieter, “Comparative Study of Surface Properties of Austenitic Stainless Steels in Sulfuric and Hydrochloric Acid Solution”, Electrochim. Acta., Vol. 42, No. 1, p.25, 1997.
18. P. Marcus and J. M. Grimal, “The Antagonistic Roles of Chromium and Sulphur in the Passivation of Ni-Cr-Fe Alloys Studied by XPS and Radiochemical Techniques”, Corros. Sci., Vol. 31, p. 377, 1990.
19. R. Kirvhheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote and U. Stolz, “The Passivity of Iron-Chromium Alloys”, Corros. Sci., Vol. 29, No. 7, p. 899, 1989.
20. P. Marcus and J. M. Grimal, “The Anodic Dissolutoin and Passivation of Ni-Cr-Fe Alloys Studied by ESCA”, Corros. Sci., Vol. 33, No. 5, p. 805, 1992.
21. Z. Fang, L. Zhang, Y. S. Wu, J. Q. Li, D. B. Sun, G, Jiang and Z. M. Cui, “Thioacetamide as an Activator for the Potentiodynamic Reactivation Method in Evaluating Susceptibility of Type 304L Stainless Steel to Intergranular Corrosion”, Corrosion, Vol. 51, No. 2, p. 124, 1995.
22. C. Liu, H. Huang and S. Chen, “Activatiors for EPR Test in Detecting Sensitization of Stainless Steels”, Corrosion, Vol. 48, No. 8, p. 686, 1992.
23. Henk F. de Jong, “Evaluation of the Constant Strain Rate Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys”, Corrosion, Vol. 34, p. 34, 1978.
24. R. N, Parkins, in “Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications”, ed. by R. D. Kane, ASTM, Philadelphia, p. 7, 1993.
25. G. R. Hoey, R. W. Revie and R. R. Ramsingh, “Comparison of the Slow Strain Rate Technique and the NACE TM0177 Tensile Test for Determining Sulfide Stress Cracking Resistance”, Materials Performance, Vol. 26, no. 10, p. 42, 1987.
26. C. D. Kim and B. E. Wilde, “A Review of Constant Strain-Rate Stress Corrosion Cracking Test”, Stress Corrosion Cracking-The Slow Strain Rate Technique, STP 665, G. M. Ugiansky and J. H. Payer, ED., ASTM, p. 97, 1979.
27. G. M. Ugiansky and J. H. Payer, Eds., “Stress Corrosion Cracking-the Slow Strain-Rate Technique”, American Society for Testing and Materials, Toronto, Canada, p. 333, 1977.
28. Q. J. Peng, H. Yamauchi and T. Shoji, “Investigation of Dendrite-Boundary Microchemistry in Alloy 182 using Auger Electron Spectroscopy Analysis”, Matallurgical and Materials Transactions A, Vol. 34A, p. 1891, 2003.