| 研究生: |
李建宏 Lee, Chien-Hung |
|---|---|
| 論文名稱: |
鈀銀/氮化鎵蕭特基二極體氫氣感測器之製備及其感測特性之研究 Fabrication and Sensing Characteristics of PdAg/GaN Schottky Diode Hydrogen Sensors |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 蕭特基二極體 、氫氣感測器 、氮化鎵 、鈀銀 |
| 外文關鍵詞: | Schottky diode, hydrogen sensor, GaN, PdAg |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,吾人利用熱蒸鍍法製備三種蕭特基二極體元件,即鈀/氮化鎵(Pd100Ag0/GaN)、鈀75銀25/氮化鎵(Pd75Ag25/GaN)及鈀50銀50/氮化鎵,以作為氫氣感測器,旨在探討鈀銀組成及退火處理對鈀銀膜層表面型態及鈀銀分佈之影響,並進一步探討元件之電性及氫氣感測特性。氫氣感測實驗之操作溫度範圍為303~453 K、氫氣濃度範圍為49~10100 ppm。由感測結果配合Langmuir吸附模式,可估算氫氣在此鈀銀膜上之吸附熱力學與動力學參數。
比較三元件之氫氣感測特性發現,Pd100Ag0/GaN元件對氫氣具有最大之靈敏度、最廣之檢極限與最快之響應速率。在303 K下,偵檢範圍為49至10100 ppm H2/air,且當氫氣濃度10100 ppm H2/air時,靈敏度為9.6x104,響應時間約2秒。但Pd75Ag25/GaN與Pd50Ag50/GaN兩元件,因膜層中鈀銀分佈不均勻,造成氫原子在膜層之擴散阻力增加,而使響應速率變慢;另外,銀較集中於金-半界面,界面吸附座數目因而減少,感測靈敏度亦較小。當元件經過熱退火後,金屬膜層之鈀、銀分佈雖較趨於均勻化,但金-半界面原子相互擴散,導致元件電性變差,感測靈敏度下降,此結果亦顯示元件之熱穩定性不佳。經過高溫長時間之反覆操作後,鈀銀膜層形態與結構產生變化,因此建議元件操作溫度在453 K以下。
為進一步解析氫氣感測結果,吾人以Langmuir等溫吸附模式來描述氫氣在鈀銀膜表面之平衡吸附,實驗結果顯示,Pd100Ag0/GaN、Pd75Ag25/GaN、Pd50Ag50/GaN三元件之吸附熱分別為-3.08 (303 K~363 K),-33.26 (363 K~453 K)、-14.13、-47.72 kJ mole-1。另外,氫之吸附反應符合一階動力模式,估算三元件之活化能分別依序為14.54、15.30、0.016 kJ mole-1。
Three Schottky diode devices, Pd100Ag0/GaN, Pd75Ag25/GaN, and Pd50Ag50/GaN, fabricated by thermal evaporation were employed as hydrogen sensors. The effects of composition of the deposited PdAg layer as well as the annealing conditions on the surface morphology and metal distribution in the PdAg layer were investigated. Also, the electric property and hydrogen sensing characteristics of devices were explored in advance. For hydrogen sensing experiments, the operating temperature was measured ranging from 303 to 453K and the hydrogen concentration ranging from 49 to 10100 ppm H2/air. Based on the Langmuir adsorption model, the thermodynamic and kinetic parameters could be estimated from hydrogen sensing results.
From the result of comparative study among three devices, it was found that the Pd100Ag0/GaN device showed the highest sensitivity, broadest detection range, and fastest response. At 303 K, the detectable concentrations were in range of 49~10100 ppm H2/air; the sensitivity at 10100 ppm H2/air reached 9.6x104, and the response time was 2s. However, the Pd75Ag25/GaN and Pd50Ag50/GaN devices showed relatively slower response due to the diffusion resistance caused by non-uniform metal distribution in the PdAg layer. Besides, most of Ag was deposited near to the metal-semiconductor interface, resulting in the decrease of hydrogen adsorption sites and thus reducing the sensitivity. After annealing, the uniformities of Pd and Ag in the metal layer were improved by the heat diffusion. In the meanwhile, interdiffusion of metals and semiconductor atoms appeared in the interface region. This would deteriorate the electric property and the sensing performances of the device, indicating the thermal stability of devices were poor. After long-time use of PdAg/GaN at high temperature, the morphology and microstructure of PdAg layer showed a large change. As a result, the devices were suggested to be used below 453 K.
For further interpreting hydrogen sensing result, the Langmuir adsorption model was employed to describe the equilibrium adsorption. From the experimental result, the adsorption heats for Pd100Ag0/GaN, Pd75Ag25/GaN, and Pd50Ag50/GaN were estimated as -3.08 (303K~363K), -33.26 (363K~423K), -14.13, and-47.72 kJ mol-1, respectively. Besides, the hydrogen adsorption rate obeyed the first-order reaction kinetics. The activation energies for three devices were in sequence estimated as 14.54, 15.3, and 0.016 kJ mole-1, respectively.
1. D. A. Skoog, Principles of instrumental analysis, Saunders College Publishing, Brooks Cole(1997).
2. 金進堂,感測器應用技術,建興出版社,(1989).
3. 羅仕炫、林獻堂,感測器原理與應用,新文京開發出版社(2003).
4. O. S. Wolfbeis,“ Chemical sensor-survey and trends,”Fresenius. J. Anal. Chem, 337, 522-527(1990).
5. P. Ronald, P. Liu, S. H. Lee, and E. Tracy. " Interfacial stability of thin film hydrogen sensors, " Proceedings of the 2000 DOE Hydrogen Program Review.
6. C. C. Liu, P. Hesketh, and G. W. Hunter,“ Chemical microsensors, ” Electrocheml. Soc. Interface, 13(2), 22-27(2004).
7. J. R. Stetter, P. J. Hesketh, and G. W. Hunter, “ Sensors : engineering structures and materials from micro to nano, ” Electrocheml. Soc. Interface, 15, 66-69 (2006).
8. 黃炳照,“固態電解質電化學氣體感測器, ” Chemistry (The Chinese Chem. Soc., Taipei) ,”59, 2, 207-217(2001).
9. G. Korotcenkov, S. D. Han, and J. R. Stetter,“ Review of electrochemical hydrogen sensors, ”Chem. Rev., 109, 1402-1433(2009).
10. G. Lu, N. Miura, and N. Yamazoe,“ High-temperature hydrogen sensor based on stabilized Zicronia and a metal oxide electrode, ”Sens. Actuators B-Chem., 35, 130-135, (1996).
11. S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “ Fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide, ” Sens. Actuators B-Chem., 66, 142–145 (2000).
12. 陳一誠,“金屬氧化物半導體型氣體感測器, ” 材料與社會,68, pp.62-66 (1992).
13. E. Lee, J. Min Lee, J. H. Koo, W. Y. Lee , and Taeyoon Lee “ Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas, ”Int. J. Hydrog. Energy, 35, 13, 6984-6991(2010).
14. S. W. Joo, I. Muto, and N. Hara, “ Hydrogen gas sensor using Pt- and Pd-added anodic TiO2 nanotube films, ” J. Electrochem. Soc., 157, 6, 221-226 (2010).
15. E. Sxennik , Z. Colak , N. Kilinc , and Z. Z. Öztürk, “ Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor, ” Int. J. Hydrog. Energy, 35, 9, 4420-4427(2010).
16. O. K. Varghese , G. K. Mor, C. A. Grimes , M. Paulose , and N. Mukherjee, “ A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations, ” J. Nanosci. Nanotechno. , 4, 7, 733-737(2004).
17. C. S. Rout, A.R. Raju, A. Govindaraj, and C. N. R. Rao,“ Hydrogen sensors based on ZnO nanoparticles, ”Solid State Commun. , 138, 3, 136–138(2006).
18. T. Anderson, F. Ren, S. Pearton , B. S. Kang, H. T. Wang, C. Y. Chang, and J. Lin, “ Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices, ” Sensors, 9, 6, 4669-4694(2009).
19. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, and G. W. Yang, “ Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen, ” J. Phys. Chem. C, 112, 17, 6643-6647(2008).
20. J. W. Gong, J. R. Sun, and Q. F. Chen, “ Micromachined sol–gel carbon nanotube/SnO2 nanocomposite hydrogen sensor, ” Sens. Actuators B-Chem., 130, 2, 829-835, (2008).
21. R. M. Prasad, A. Gurlo, R. Riedel, M. Hubner, N. Barsan, and U. Weimar, “ Microporous ceramic coated SnO2 sensors for hydrogen and carbon monoxide sensing in harsh reducing conditions, ” Sens. Actuators B-Chem., 149, 1, 105-108(2010).
22. C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, and T. Kerdcharoen, “ Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing, ” Sensors , 10, 8, 7705-7715(2010).
23. M. H. Yang, H. L. Liu, D. S. Zhang, and X. L. Tong “ Hydrogen sensing performance comparison of Pd layer and Pd/WO3 composite thin film coated on side-polished single- and multimode fibers, ” Sens. Actuators B-Chem., 149, 1, 161-164 (2010).
24. 李勝利, 各類型偵測感應器簡介, 勞工安全衛生簡訊第76期。
25. E. B. Lee, I. S. Hwang, J. H. Cha, H. J. Lee, W. B. Lee, J. J. Pak, J. H. Lee and B. K.Ju,“Micromachined catalytic combustible hydrogen gas sensor, ”Sens. Actuators B-Chem., 153, 392-397(2011).
26. A. Mandelis and C. Christofides, “ Physics, chemistry and technology of solid state gas sensor devices, ” New York: John Wily & Sons(1993).
27. D. A. Neamen, “ Semiconductor physics and devices-basic principles, ” McGraw Hill, Boston (2003).
28. I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “ A hydrogen -sensitive MOS field-effect transistor, “ Appl. Phys. Lett., 26, 2, 55-57(1975).
29. T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf and M. Chen,“ MOS and Schottky diode gas sensors using transition metal electrodes, ”J. Electron Mater., 12, 1, 181(1983).
30. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “ Hydrogen-sensitive characteristics of a novel Pd/InP M-O-S Schottky diode hydrogen Sensor, ” IEEE Trans. Electron Devices, 48, 1938-1944 (2001).
31. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin and C. K. Wang, “ Comparative Hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes, ” Jpn. J. Appl. Phys., 40, 6254-6259 (2001).
32. L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Brioes, “ A new hydrogen sensor based on a Pt/GaAs Schottky diode, ” J. Electrochem. Soc., 138, 159-162(1991).
33. C. Weichsel, O. Pagni, and A. W. Leitch, “ Electrical and hydrogen sensing characteristics of Pd/ZnO Schottky diodes grown on GaAs, ” Semicond. Sci. Technol., 20, 840-843 (2005).
34. A. Salehi, A. Nikfarjam, D. J. Kalantari, “ Pd/porous-GaAs Schottky contact for hydrogen sensing application, ” Sens. Actuators B-Chem., 113, 419-427 (2006).
35. K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chung, C. Y. Chen, and W. C. Liu, “ A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor, ” Semicond. Sci. and Technol., 18, 9, 615-619 (2003).
36. Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “ Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes, ” J. Vac. Sci. & Technol., 21, 6, 2471-2477(2003).
37. Y. Y. Tsai, H. I. Chen, C. W. Hung, T. P. Chen, T. H. Tsai, K. Y. Chu, L. Y. Chen and W. C. Liu, “ A hydrogen gas sensitive Pt-In0.5Al0.5P metal-semiconductor Schottky diode, ” J. Electrochem. Soc., 154, 357-361(2007).
38. Y. Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. C. Chang, H. I. Chen and W. C. Liu, “ Comprehensive investigation of hydrogen-sensing properties of Pt/InAlP-based Schottky diodes, ” Sens. Actuators B-Chem., 124, 2, 535-541(2007).
39. Y. Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. I. Chen, and W. C. Liu, “ On the hydrogen sensing properties of a Pt-oxide-In0.5Al0.5P Schottky diode, ” Electrochem. Solid State Lett., 9, 108-110 (2006).
40. C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu, “ A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor, ” IEEE Electron Device Lett., 27, 951-954 (2006).
41. C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, L. Y. Chen, K. Y. Chu, W. C. Liu, “ Temperature-dependent hydrogen sensing characteristics of a new Pt/InAlAs Schottky diode-type sensor, ” Sens. Actuators B-Chem., 128, 574-580 (2008).
42. Y. Y. Tsai, C. C. Cheng, P. H. Lai, S. I. Fu, C. W. Hung, H. I. Chen, W. C. Liu, “ Comprehensive study of hydrogen sensing characteristics of Pd metal-oxide-semiconductor (MOS) transistors with Al0.24Ga0.76As and In0.49Ga0.51P Schottky contact layers, ” Sens. Actuators B-Chem., 120, 687-693 (2007).
43. C. W. Hung, H. I. Chen, K. W. Lin, T. H. Tsai, T. P. Chen, L. Y. Chen, K. Y. Chu and W. C. Liu, “ A Pd/oxide/AlGaAs (MOS) junction resistor-type hydrogen sensor, ” IWJT-2008-Extended Abstracts, 179-182 (2008).
44. C. K. Kim, J. H. Lee , Y. H. Lee, N. I. Cho, and D. J. Kim, “ A study on a platinum-silicon carbide Schottky diode as a hydrogen gas, ” Sens. Actuators B-Chem., 66, 116-118 (2000).
45. W. M. Tang, P. T. Lai, “A Comparison of MISiC Schottky-Diode Hydrogen Sensors Made by NO, N2O, or NH3 Nitridations, ” IEEE Trans. Electron Devices, 53, 2378-2383 (2006).
46. F. K. Yam and Z. Hassan, “ Schottky diode based on porous GaN for hydrogen gas sensing application, ” Appl. Surf. Sci., 253, 9525-9528 (2007).
47. F. K. Yam , Z. Hassan, and A.Y. Hudeish, “ The study of Pt Schottky contact on porous GaN for hydrogen sensing, ” Thin Solid Films , 515, 7337-7341 (2007).
48. H. Hasegawa and M. Akazawa, “ Mechanism and control of current transport in GaN and AlGaN Schottky barriers for chemical sensor applications, ” Appl. Surf. Sci., 254 , 3653-3666 (2008).
49. S. Suresh, M. Balaji, V. Ganesh, and K. Baskar, “ Investigations on the nonidealities in Pd/n-GaN Schottky diodes grown by MOCVD, ” J. Alloy. Compd., 506, 615-619 (2010).
50. B. P. Luther, S. D. Wolter, and S. E. Mohney, “ High temperature Pt Schottky diode gas sensors on n-type GaN, ” Sens. Actuators B-Chem., 56, 164-168 (1999).
51. S. N. Das and A. K. Pal, “ Hydrogen sensor based on thin film nanocrystalline n-GaN/Pd Schottky diode, ” J. Phys. D- Appl. Phys. 40, 7291-7297 (2007).
52. Y. Irokawa, “ Hydrogen-induced change in the electrical properties of metal-insulator-semiconductor Pt-GaN diodes, ” J. Appl. Phys., 108, 094501 (2010).
53. J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “ AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals, ” Solid-State Electron. , 49, 1330-1334 (2007).
54. T. H. Tsai, H. I. Chen, I. P. Liu, C. W. Hung, T. P. Chen, L. Y. Chen, Y. J. Liu, W. C. Liu, “ Investigation on a Pd-AlGaN/GaN Schottky diode-type hydrogen sensor with ultrahigh sensing responses, ” IEEE Trans. Electron Devices, 55, 3575-3581 (2008).
55. K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, H. Hasegawa, “ Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure, ” Appl. Surf. Sci., 244, 273-276 (2005).
56. R. C. Hughes and W. K. Schubert, “ Thin film of Pd/Ni alloys for detection of high hydrogen concentrations, ” J. Appl. Phys., 71, 1, 542-544 (1992).
57. R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “ Thin film palladium and silver and layers for metal-insulator-semiconductor sensors, ” J. Appl. Phys., 62, 3,1074-1083 (1987).
58. E. Lee, J. M. Lee, E. Lee, J. S. Noh, J. H. Joe, B. Jung , and W. Lee, “ Hydrogen gas sensing performance of Pd-Ni alloy thin films, ” Thin Solid Films, 519, 2, 880-884 (2010).
59. S. Kajita, S. Yamaura, H. Kimura, and A. Inoue, “ Hydrogen sensing ability of Pd-based amorphous alloys, ” Sens. Actuators B-Chem., 150, 1, 279-284 (2010).
60. I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “ Hydrogen in smoke detected by Pd-gate field-effect transistor, ” Rev. Sci. Instrum., 47, 6, 738-740 (1976).
61. I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “ Hydrogen sensitive MOS strucyures, ” Vacuum, 27, 4, 245-247 (1977).
62. Y. Irokawa, “ Hydrogen-induced change in the electrical properties of metal-insulator-semiconductor Pt-GaN diodes, ” J. Appl. Phys., 108, 9, 094501 (2010).
63. T. H. Tsai, J. R. Huang, K. W. Lin, C. W. Hung, W. C. Hsu, H. I. Chen and W. C. Liu, “ Improved hydrogen-sensing properties of a Pt/SiO2/GaN Schottky diode, ” Sens. Actuators B-Chem., 10, 158-160 (2007)
64. T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, C. F. Chang, C. W. Hung, L. Y. Chen, T. P. Chen, Y. C. Liu and W. C. Liu, “ SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode, ” Sens. Actuators B-Chem., 136, 310-316 (2009).
65. A. A. Saaman and P. Bergveld, “A classification of chemically sensitive semiconductor devices, ” Sens. Actuators B-Chem., 7, 2, 75-87 (1985).
66. H. Hasegawa and H. Ohno, “ Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces, ” J. Vac. Sci. Technol. B, 4 , 4, 1130-1138 (1986).
67. 周彥伊,“ 鈀/磷化銦蕭基特二極體氫氣感測器之製備、特性分析及感測研究,”成功大學化學工程所博士論文,2005。
68. 吳忠燁,“ 無電鍍法製備鈀/氮化鋁鎵蕭基特二極體氫氣感測器之研究,”成功大學化學工程所碩士論文,2008。
69. 陳嘉銘,“ 以電泳法製備鈀/磷化銦蕭基特二極體氫氣感測器之研究,”成功大學化學工程所碩士論文,2005。
70. 張政柏,“ 鈀/磷化銦二極體氫氣感測器之電泳製程探討,” 成功大學化學工程所碩士論文,2007。
71. A.G. Knapton, “ Palladium alloys for hydrogen diffusion membranes, ” Plat. Met. Rev., 21, 2, 44 (1977).
72. K. Scharnagl, M. Eriksson, A. Karthigeyan, M. Burgmair, M. Zimmer, I. Eisele, “ Hydrogen detection at high concentrations with stabilised palladium, ” Sens. Actuators B-Chem., 78, 138-143 (2001).
73. M. Wang, Y. Feng, “ Palladium-silver thin film for hydrogen sensing, ” Sens. Actuators B-Chem., 123, 101-106 (2007).
74. V. Palmisano, M. Filippi, A. Baldi, M. Slaman, H. Schreuders, and B. Dam,“An optical hydrogen sensor based on a Pd-capped Mg thin film wedge, ”Int. J. Hydrog. Energy, 35, 22, 12574-12578 (2010).
75. N. Tasaltin, S. Ozturk, N. Kilinc, and Z. Z. Ozturk, “ Investigation of the hydrogen gas sensing properties of nanoporous Pd alloy films based on AAO templates, ” J. Alloy. compd., 509, 14, 4701-4706 (2011).
76. Y. T. Cheng, L. Yang, D. Lisi, and W. M. Wang, “ Preparation and characterization of Pd/Ni thin films for hydrogen sensing, ” Sens. Actuator B-Chem., 30 , 1, 11-16 (1996).
77. H. Amandusson, L. G. Ekedahl, and H. Dannetun, “ Hydrogen permeation through surface modified Pd and PdAg membranes, ”J. Membr. Sci., 193, 35-47 (2001).
78. W. Liang, R. Hughes, “ The effect of diffusion direction on the permeation rate of hydrogen in palladium composite membranes, ” Chem. Eng. J., 112, 81-86 (2005).
79. K. Hou, R. Hughes, “ Preparation of thin and highly stable membranes and simulative analysis of transfer Pd/Ag composite resistance for hydrogen separation” J. Membr. Sci., 214, 43-55 (2003).
80. F. A. Lewis, “ The palladium-hydrogen system, ” Platinum Metals Rev., 26, l, 20-27 (1982).
81. J. Hu, M. Jiang, and Z. Lin, “ Novel technology for depositing a Pd-Ag alloy film on a tapered optical fiber for hydrogen sensing, ” J. Opt. A-Pure Appl. Opt., 7 , 593-598 (2005).
82. J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “ AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals, ” Solid-State Electron., 49, 1330-1334 (2005).
83. W. Schottky, Naturwissenschaften, 26, pp. 843, 1938.
84. W. Schottky, R. Stromer, and F. Waibel, Hochfrequenztechnik, 37, pp. 162-165 ,1931.
85. B. L. Sharma, Metal-semiconductor Schottky barrier junctions and their applications, Plenum, New York (1984).
86. Monch, “ Metal-semiconductor contacts: electronic properties, ” Surf. Sci., 299-300, 1, 928-944 (1994).
87. S. M. Sze, Semiconductor devices-physics and technology, John Wily &Sons, New York (2002).
88. L. L. Jewell, B. H. Davis, “ Review of absorption and adsorption in the hydrogen-palladium system, ” Appl. Catal. A-Gen, 310, 1-15 (2006).
89. 唐仁政,田榮璋,二元合金相圖及中間相晶體結構,中南大學出版社(2009).
90. X. Ke, G. J. Kramer, “ Absorption and diffusion of hydrogen in palladium-silver alloys by density functional theory, ” Phys. Rev. B , 66, 184304 (2002).
91. G. L. Holleck,“ Diffusion and solubility of hydrogen in palladium and palladium-silver alloys, ”J. Phys. Chem, 74, 3, 503-510 (1970).
92. L. Opara, B. Klein, H. Zucher, “ Hydrogen-diffusion in Pd1-xAgx (0<=x<=1), ” J. Alloy. Compd. , 253, 378-380 (1997).
93. H. Barlag, L. Opara, H. Zuchner, “ Hydrogen diffusion in palladium based f.c.c. alloys, ” J. Alloy. Compd., 330, 434-437 (2002).
94. I. Lundstrom, M. Armgath, and L.-G. Peterson,“ Physics with catalytic metal gate chemical sensors, ”Rev, Solid State Mater. Sci., 15, 201-278 (1989).
95. J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “ Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: observation of large hydrogen-induced dipoles at the Pd-SiO2 interface, ” J. Appl. Phys., 78, 2, 988 (1995).
96. L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundstrőm, “ Hydrogen adsorption states at the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure, ” J. Appl. Phys., 58 , 1, 404 (1985).
97. I. Lundström, “ Hydrogen sensitive MOS-structures part1: principles and applications, ” Sens. Actuator B-Chem., 1, 403-426 (1981).
98. 陳昱任,“ 鈀/氮化鎵蕭基特二極體氫氣感測器之製備及其感測特性之研究,”成功大學化學工程所碩士論文,2006.
99. 黃俊瑞,“ 氮化鎵系列蕭特基接觸式氫氣感測元件之研究,” 成功大學微電子工程所博士論文,2007.
100. 邱柏順,“ 具有表面處理之三-氮族化合物半導體系列氫氣感測器之研製,”成功大學微電子工程所碩士論文,2009.
101. 蔡宗翰, “ Ⅲ-Ⅴ族化合物半導體式氫氣感測器之研究,”成功大學微電子工程所博士論文,2010.
102. J. Okazaki, D. A. P. Tanaka, M. A. L. Tanco ,Y. Wakui, F. Mizukami, T. M. Suzuki, “ Hydrogen permeability study of the thin Pd–Ag alloy membranes in the temperature range across the alpha–beta phase transition, ” J. membr. Sci., 282, 370-374 (2006).
103. G. N. Burland, and P. J. Dobson,“ Pseudomorphic Behavior and Inter-Diffusion Between Palladium Films and Silver and Gold, ”Thin Solid Films, 75, 4, 383-390,(1981).
104. A. C. Makrides, “ Adsorption of hydrogen by silver-palladium alloys, ” J. Phys. Chem.,68 , 8, 2160-2169(1964).