| 研究生: |
張文兆 Chang, Wen-Chao |
|---|---|
| 論文名稱: |
含孔洞複合材料之裂縫起裂預測 Prediction of Crack Initiation from Holes in Composites |
| 指導教授: |
胡潛濱
Hwu, Chyan-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 有限破壞力學 、預測失效應力 、孔洞 |
| 外文關鍵詞: | Finite Fracture Mechanics, prediction of failure stress, hole |
| 相關次數: | 點閱:37 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
材料中的缺陷,尤其是孔洞,對於材料的強度和可靠性具有重要的影響。在工程應用中,孔洞也是常見的設計方式,例如飛機上的窗戶、機身上的螺絲孔、連接孔…等。然而,傳統的失效應力計算方法可能無法準確預測含有缺陷的材料強度。因此,需要採用新的預測方法來解決這個問題。
有限破壞力學是一種相對新興的材料強度分析方法,可以預測含有缺陷材料的失效應力。它不僅可以模擬材料的裂紋擴展行為,還能處理已產生裂縫或未產生裂縫的情況。這種方法彌補了傳統破壞力學的不足。
本文介紹了缺陷對材料強度和可靠性的影響,特別是孔洞在工程應用中的普遍存在和應力集中問題。針對複合材料,本文提出了針對混合破壞模式的有限破壞力學方程式,以彌補傳統方法的不足。有限破壞力學方法可以提供準確的失效應力和裂紋長度預測,並且能夠處理各種形狀的缺陷結構。本文最後的範例也比較了不同孔洞形狀和纖維排向對抵抗負載的影響差異。
總體而言,有限破壞力學在預測含缺陷材料的強度方面提供了準確性,並在工程設計和分析中具有重要的應用價值。它能夠處理不同形狀的缺陷結構,並提供準確的失效應力和裂紋長度預測,有助於提高材料的可靠性和工程設計的效率。
Defects in materials, particularly holes, have a significant impact on the strength and reliability of the material. Circular holes are commonly found in engineering applications, such as round openings in aircraft windows. However, traditional methods for calculating failure stress may not accurately predict the strength of materials with defects. Therefore, new predictive methods are needed to address this issue.
Finite fracture mechanics is a relatively new approach for analyzing material strength, capable of predicting the failure stress of materials with defects. It can simulate crack propagation behavior and handle situations involving both existing and potential cracks. This method addresses the limitations of traditional fracture mechanics.
This paper discusses the influence of defects on the strength and reliability of materials, focusing particularly on the common occurrence of circular holes in engineering applications and the issue of stress concentration. For composite materials, a finite fracture mechanics equation is proposed to address mixed fracture modes, compensating for the limitations of traditional methods. Finite fracture mechanics provides accuracy in predicting failure stress and crack length, and it can handle various types of defect structures. The paper also includes examples comparing different hole shapes and fiber orientations in terms of load resistance.
In conclusion, finite fracture mechanics offers accuracy in predicting the strength of materials with defects and holds significant value in engineering design and analysis.
[1] P. Weißgraeber, D. Leguillon, W. Becker, A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech. 86(1) (2016) 375
[2] A. Sapora, A. Torabi, S. Etesam, P. Cornetti, Finite fracture mechanics crack initiation from a circular hole, Fatigue Fract. Eng. Mater. Struct. 41 (7) (2018) 1627–163
[3] Felger J, Stein N, Becker W. Mixed-mode fracture in open-hole composite plates of finite-width: An asymptotic coupled stress and energy approach. Int J Solids Struct 2017;122:14–2
[4] Camanho PP, Erçin GH, Catalanotti G, Mahdi S, Linde P. A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos Part A Appl Sci Manuf 2012;43:1219–25
[5] Shu Li, Fei Han. A New Failure Theory and Importance Measurement Analysis for Multidirectional Fiber-Reinforced Composite Laminates with Holes Materials 2022, 15, 2227.
[6] A. Sapora, P. Cornetti, Crack onset and propagation stability from a circular hole under biaxial loading, Int. J. Fract. 214 (1)
[7] P. Weißgraeber, J. Felger, D. Geipel, W. Becker, Cracks at elliptical holes: Stress intensity factor and finite fracture mechanics solution, Eur. J. Mech. A Solids (ISSN: 0997-7538) 55 (2016) 192-198
[8] Pan Z, Zhang L, Liew K. A phase-field framework for failure modeling of variable stiffness composite laminae. Comput Methods Appl Mech Eng 2022;388:11419
[9] Modniks J, Sp ̄arnin, š E, Andersons J, Becker W. Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension. J Compos Mater 2015;49(9):1071–80.
[10] Cornetti P, Sapora A. Penny-shaped cracks by finite fracture mechanics.Int J Fract. 2019;219(1):153-159..
[11] Felger, J., Stein, N., Becker, W.: Asymptotic finite fracture mechanics solution for crack onset at elliptical holes in composite plates of finite-width. Eng. Fract. Mech. 182, 621–634 (2017)
[12] Leguillon, D.: Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A Solids 21(1), 61–72 (2002).
[13] Cornetti, P., Pugno, N., Carpinteri, A., Taylor, D.: Finite fracture mechanics: a coupled stress and energy failure criterion. Eng. Fract. Mech. 73(14), 2021–2033 (2006)
[14] Hwu C. Anisotropic elastic plates. Springer; 2010.
[15] Hwu C. Anisotropic Elasticity with Matlab. Springer; 2021.
[16] Anderson TL. Fracture mechanics: fundamentals and applications. 3rd ed. Boca Raton, USA: CRC Press; 2004.
[17] Hwu C. Matrix form near tip solutions of interface corners. International Journal of Fracture 2012; 176(1): 1-16.
[18] Hwu C, Huang HY. Investigation of the stress intensity factors for interface corners. Engineering Fracture Mechanics 2012; 93: 204-224..
[19] J. Majak and S. Hannus, “Orientational design of anisotropic materials using the Hill and Tsai–Wu strength criteria,” Mech. Compos. Mater., 39, No. 6, 509-520 (2003)
[20] Spārniņš, Edgars & Modniks, Janis & Andersons, Jānis. (2012). Experimental study of the mechanical properties of unidirectional flax fiber composite.
[21] Tada H, Paris P, Irwin G. The Stress Analysis of Cracks. Paris Productions Incorporated, St Louis, MO, USA: Handbook. second ed; 1985.
[22] yatollahi MR, Torabi AR. Investigation of mixed mode brittle fracture in rounded‐tip V‐notched components. Eng Fract Mech. 2010;77(16):3087‐3104.
[23] Camanho, P.P., Maimí, P., Dávila, C.G., Prediction of size effects in notched laminates using continuum damage mechanics, Composites Science and Technology (2007), doi: 10.1016/j.compscitech.2007.02.005
[24] J. R. Rice, "A path independent integral and the approximate analysis of strain concentration by notches and cracks," 1968.
[25] N. Choi and Y.-Y. Earmme, "Evaluation of stress intensity factors in circular arcshaped interfacial crack using L integral," Mechanics of materials, vol. 14, no. 2, pp. 141-153, 1992
[26] S. Im and K.-S. Kim, "An application of two-state M-integral for computing the 43 intensity of the singular near-tip field for a generic wedge," Journal of the Mechanics and Physics of Solids, vol. 48, no. 1, pp. 129-151, 2000.
[27] C. Hwu and T. Kuo, "A unified definition for stress intensity factors of interface corners and cracks," International Journal of Solids and Structures, vol. 44, no. 1819, pp. 6340-6359, 2007.
[28] 姚俊嘉, "轉折裂縫之應力強度因子計算," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2020.
[29] 林宗錡, "混合式複合材料之脫層分析," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2022.
[30] Peterson, R., Wahl, A.: Two and three dimensional cases of stress concentration and comparison with fatigue tests. Trans. ASME 58, A15 (1936)
[31] Neuber, H.,. Kerbspannungslehre: Theorie der Spannungskonzentration. Genaue Berechnung der Festigkeit. Klassiker der Technik. Berlin, Springer .(2000)
[32] Taylor, D. , The theory of critical distances. Eng. Fract. Mech. 75 (7), 1696–1705 . (2008).
[33] Novozhilov, V.: On a necessary and sufficient criterion for brittle strength. J. Appl. Math. Mech. 33(2), 201–210 (1969)
[34] Waddoups, M., Eisenmann, J., Kaminski, B.: Macroscopic fracture mechanics of advanced composite materials. J. Compos.Mater. 5(4), 446–454 (1971)
[35] Hashin, Z.: Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids 44(7), 1129–1145 (1996)
[36] Kirsch, G., Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Springer.(1898)
[37] Taylor, D., The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Elsevier . (2010)
[38] Carpinteri, A. , Cornetti, P. , Pugno, N. , Sapora, A. , Taylor, D. , 2008. A finite fracture mechanics approach to structures with sharp V-notches. Eng. Fract. Mech. 75 (7), 1736–1752 .
[39] Sapora, A. , Cornetti, P. , Carpinteri, A. , 2013. A finite fracture mechanics approach to V-notched elements subjected to mixed-mode loading. Eng. Fract. Mech. 97, 216–226 .
[40] Hebel, J. , Becker, W. , 2008. Numerical analysis of brittle crack initiation at stress concentrations in composites. Mech. Adv. Mater. Struct. 15 (6–7), 410–420 .
[41] Andersons, J. , Tarasovs, S. , Sp ¯arni ¸n š, E. , 2010. Finite fracture mechanics analysis of crack onset at a stress concentration in a UD glass/epoxy composite in off-axis tension. Compos. Sci. Technol. 70 (9), 1380–1385 .
[42] Weißgraeber, P. , Becker, W. , 2011. Predicting effective strengths of bonded lap joints with a finite fracture mechanics criterion. In: Proceedings of the 32nd Risø International Symposium in Materials Science Composite Materials for Struc- tural Performance: Towards higher Limits. Technical University of Denmark, pp. 479–486 .
[43] Cornetti, P. , Manti ˇc, V. , Carpinteri, A. , 2012. Finite fracture mechanics at elastic in- terfaces. Int. J. Solids Struct. 49 (7), 1022–1032 .
[44] Catalanotti, G. , Camanho, P. , 2013. A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates. Compos. Sci. Technol. 76, 69–76 .
[45] Hebel, J. , Dieringer, R. , Becker, W. , 2010. Modelling brittle crack formation at geo- metrical and material discontinuities using a finite fracture mechanics approach. Eng. Fract. Mech. 77 (18), 3558–3572