| 研究生: |
陳淑萍 Chen, Shu-Ping |
|---|---|
| 論文名稱: |
利用理論計算探討脫氫前後穩定苯甲酸衍生物負電荷的因素及取代基效應 Theoretical Studies of the Mechanisms and Substituent Effects in Stabilizing the Negative Charge in Benzonic Acids |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 超共軛 、天然鍵結軌域 、誘導效應 |
| 外文關鍵詞: | natural bond orbital(NBO), inductive effect, hyperconjugation |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用B3LYP/6-31G*計算去質子的X-C6H4COOH及X-C6H4NH(CH3)2+結構。由NBO分析所得到的最佳化路易士結構顯示,C6H5COOH苯基上有三個共軛雙鍵及羰基(COOH基)穩定電子,脫氫前後分子的總能及穩定度會改變;而在接上取代基後X-C6H4COOH及X-C6H4NH(CH3)2+,其總能及穩定度大小,會受到取代基及取代基取代的位置(鄰位、間位、對位)所影響,其總能、酸度、pka值、鍵長、E(2)值、電荷及s-character百分比均會有改變,特別在脫氫後穩定負電荷的因素,在取代基、取代基取代位置、苯環共振效應、超共軛及負超共軛穩定作用是非常重要的因素。
當取代基氟原子的數目愈多時其穩定度愈高,在取代基氟原子的數目相同時,直鏈取代的穩定度高於支鏈取代,且取代基上含氫氧基比氟原子對穩定度的貢獻更大,取代基上不同取代位置影響穩定度,幾乎是對位取代>間位取代>鄰位取代。利用理論計算所得苯甲酸及二甲苯胺衍生物Isodesmic Reaction的DEreaction值,對Sheppard的實驗結果pkawater ethanol值作圖,有很好的線性關係,此乃表示DE0值愈小,其化合物較穩定,酸度也愈高。苯甲酸羰基的穩定度影響酸度,而穩定度由取代基、取代基取代位置及負電荷決定。取代基的誘導效應、共振效應、超共軛、+R character及p-π interaction都會影響到分子的穩定度。
B3LYP/6-31G* calculations have been employed to optimize two series of compounds: X-C6H4COOH and X-C6H4NH(Me)2+ {X=CF3,C2F5, n-C3F7, iso-C3F7, n-C4F9, C(OH)(CF3)2}, followed by Natural Bond Orbital studies. Deprotonated counterparts have also been under studies in order to acquire for supplementary and/or comparative information concerning effects (1) the nature of X and (2) the substitution sites of X on acidity. It is also our goal to probe how valid the hyperconjugation argument can account for the substitution effects of X on the acidity of the two series of compounds.
In the fluorinated alkyl substituents, the number of F-atoms will uniformly lead to higher stabilization energies, an observation predicted by hyperconjugation effects.
The site effects generally follow the order para > meta > ortho, which is also well rationalized by the combination of hyperconjugation with the well-known mesomeric effects. The latter contains +R character and p-p interaction between X and the phenyl system. It is also found, for the CnF2n+1 substituents, branched alkyl groups exert fewer enhancements on the acidity than the non-branched.
Moreover, the OH group shows higher enhancements of the acidity than the F-atom does. The relative acidities are well contrasted to the isodemic reaction energies: a more negative isodemic energy results in a more stable product-system, which in return accompanied by a lower reported pKa value.
1.Sheppard, W. A. J. Am. Chem. Soc., 1965, 87, 2410.
2.Klabunde, K. J. J. Am. Chem. Soc., 1972, 94, 820.
3.Roithova, J.; Exner, O. J. Phys. Org. Chem., 2001, 14, 752.
4.Exner, O.; Bohm, S. J. Org. Chem., 2002, 67, 6320.
5.Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc., 1987, 109, 7362.
6.蘇琪惠, 國立成功大學碩士論文, 2006.
7.化學化工大辭典, 黃榮茂等,台北市,曉園出版社, 2000.
8.Barbour, J. B.; Karty, J.M.; Bohm. S. J. Org. Chem., 2004, 69, 648.
9.Jones, M. Organic Chemistry, 2nd ed.; W. W. Norton Company Inc.: New York, 2000.
10.Mulliken, R. S. J. Phys. Chem., 1933, 1, 492; 1935, 3, 520; 1937, 7, 339.
11.Mo, Y.; Jiao, H.; Schleyer, P. v. R. J. Org. Chem., 2004, 69, 3493.
12.Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 4th ed.; Kluwer
Academic/Plenum Publishers Press: New York, 2000.
13.Solomons, T. W. G. Organic Chemistry revised printing; Wiley, John & Sons.
Inc.: New York, 2000.
14.Holt, J.; Karty, J. M. J. Am. Chem. Soc., 2003, 125, 2797.
15.Brockway, L. O. J. Phys. Chem., 1937, 41, 185.
16.Roberts, J. D.; Webb, R. L.; McElhill, E. A. J. Am. Chem. Soc., 1950, 72,
408.
17.Andreades, S. J. Am. Chem. Soc., 1964, 86, 2003.
18.Radom, R.; Hoffmann, L.; Pople, J. A.; Schleyer, P. v. R.; Hehre, W. J.;
Salem, L. J. Am. Chem. Soc., 1972, 94, 6221.
19.Schleyer, P. v. R.; Kos, A. J. Tetrahedron, 1983, 39, 1141.
20.Schneider, W. F.; Nance, B. I.; Wallington, T. J. J. Am. Chem. Soc., 1995,
117, 478.
21.黃士凌, 國立成功大學碩士論文, 2004.
22.Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics And
Dynamics, 2nd ed.; Prentice-Hall, Inc.: New Jersey, 1999.
23.Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry fourth
edition; Harper Collins College Publishers: New York, 1993.
24.Huzinaga, S. Gaussian Basis Sets for Molecular Calculations; Elsevier: New
York, 1984.
25.黃國棠, 國立成功大學碩士論文, 2004.
26.Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. ab Initio
Molecular Orbital Theory; Wiley, John & Sons. Inc.: Canada, 1986.
27.Hohenberg, P.; Kohn, W. Phy. Rev. B, 1964, 136, 864.
28.Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-
Consistent Field for Molecular and Solids; McGraw-Hill: New York, 1974.
29.Kohn, W.; Sham, L. J. Phys. Rev. A, 1965, 140, 1133.
30.Becke, A. D. Phys. Rev. A, 1988, 38, 3098.
31.Perdew, J. P.; Wang, Y. Phys. Rev. B, 1992, 45, 13244.
32.Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785.
33.Reed, A. E.; Curtiss, L.; Weinhold, A. F. Chem. Rev., 1989, 88, 899.
34.林岱弘, 國立成功大學碩士論文, 2005.
35.Gaussian 98, Revision A.9,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A.
Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone,
M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz,
A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S.
Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
36.DeTar, D. F. J. Org. Chem., 1995, 60, 7125.
37.Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc.,
1970, 92, 4796.