| 研究生: |
陳敬育 Chen, Jing-Yuh |
|---|---|
| 論文名稱: |
磷化銦異質接面雙極性電晶體與光電開關元件之研究 Investigation of InP-based Heterojunction Bipolar Transistors and Optoelectronic Switching Devices |
| 指導教授: |
鄭岫盈
Cheng, Shiou-Ying 劉文超 Liu, Wen-Chau 郭德豐 Guo, Der-Fong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 崩潰 、衝擊游離 、磷化銦 、光電開關 、電晶體 |
| 外文關鍵詞: | breakdown, impact ionization, InP, optoelectronic switching, transistor |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們成功地以低壓有機金屬化學汽相沉積法(LP-MOCVD)研製以磷化銦(InP)為基礎之異質接面雙極性電晶體。吾人將量測並討論砷化銦鎵/磷化銦(InGaAs/InP)超晶格式-集極異質接面雙極性電晶體及複合式-集極磷砷化銦鎵/砷化銦鎵(InGaAsP/InGaAs)異質接面雙極性電晶體的特性;另外,並將針對兩種新穎式光電開關深入探討其作用原理。
首先吾人提出一種具超晶格式-集極之砷化銦鎵/磷化銦異質接面雙極性電晶體。在超晶格結構之中,由集極注入的電洞衝擊原先被束困在超晶格結構中的電洞,並使其衝擊游離越過價電帶的不連續位障,脫離原本受困的超晶格結構。因為這些被衝擊游離的電洞將注入基極,導致射-基接面的順向偏壓增加,使本元件集-射極在低於崩潰電壓的操作電壓之下,基極的電流減小,而電流增益也可順勢增加;因此,本研究元件之交流電流增益高達204。而共射極電流增益在極低集極電流區域不只可高達47;而且在相當廣的集極操作電流區域時,本研究元件仍具有相當大的電流增益。
另外,吾人也提出一複合式-集極磷砷化銦鎵/砷化銦鎵異質接面雙極性電晶體,由於基-射極接面間的磷砷化銦鎵背置層,有效地抑制了兩異質接面間的位能障及電流阻隔效應。此外,由於基-集極間為同質接面,電流阻隔效應也不復存在,因此本元件展現了許多良好的電特性--包含低補償電壓及低飽和電壓。此外,一般會伴隨以磷化銦材料系統為基礎所研製之異質接面雙極性電晶體之低崩潰電壓特性,在本元件中亦不復見。本元件展現的最大交流電流增益為118,而有效電流增益區域亦展延至相當廣的集極電流操作範圍。
再則,本文亦提出一結合雙重位能障及三角形位能障的光電開關元件。元件在順向偏壓操作之下,載子經由共振穿透效應穿透過雙重位能障,產生了N型的負微分電阻現象;而在反向偏壓操作之下,由於累增崩潰效應、載子堆積及電位重新分佈的結果,使吾人發現S型負微分電阻現象。因為這些負微分電阻特性會隨著入射光源的變化而改變,所以,吾人將之稱為光電開關。另外,操作溫度對本元件電特性的影響,在本文中我們亦將深入探討。
另一方面,一種具層型位障砷化鋁鎵/砷化鎵/磷化銦鎵鋁之光電開關元件將被提出。此元件結構特徵為集極主要由為砷化鋁鎵/n型單原子摻雜層/砷化鎵/磷化銦鎵鋁結構所組成。此元件經由負微分電阻區域轉換區分為低電流態及高電流態;而經由注入光源或電源可控制這雙態的轉換。本光電開關元件在光源照射後所顯現的諸多特性,如交換電壓(switching voltage)、保持電壓(holding voltage)、交換電流(switching current)及保持電流(holding current),與先前許多研究團隊所提出的負微分電阻及光電開關元件之特性不盡相同。此外,在操作溫度高達絕對溫度423度時仍能保有負微分電阻的特性,使本元件擁有極寬廣之操作溫度範圍並且可提供在高溫操作應用的可能性。
In this dissertation, we have successfully fabricated and demonstrated InP-based heterojunction bipolar transistors (HBTs). The characteristics of InP/InGaAs HBT with a superlattice-collector (SC) structure and InGaAs/InGaAsP composite-collector HBT (CCHBT) are measured and discussed. In addition, two interesting optoelectric switches, a double-barrier-emitter triangular-barrier optoelectronic switch (DTOS) and a bulk-barrier optoelectronic switch (BBOS) with an AlGaAs/δ(n+)-doped sheet/GaAs/InAlGaP collector structure are also investigated and discussed.
The studied devices were grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and molecular beam epitaxy (MBE). The characteristics of epitaxial layers will be analyzed by double-crystal x-ray diffraction (DCXRD), photoluminescence (PL), and electrochemical CV profiling (ECV). After finishing the growth, mesa-type devices were formed by utilizing photolithography, vacuum evaporation, lift-off, alloying and selective etching techniques.
DC characteristics of an interesting InP/InGaAs heterojunction bipolar transistor with a superlattice (SL) structure incorporated in the base-collector (B-C) junction are demonstrated. In the SL structure, holes injected from the collector collide with holes confined in the SL and impact them out of the SL across the valence-band discontinuities. With a collector-emitter (C-E) voltage VCE less than the C-E breakdown voltage BVCEO, the current gain can be increased at base-current inputs because the released holes from the SL inject into the base to cause the E-B junction operating under more forward-biased condition. An AC current gain up to 204 is obtained. At B-E voltage VBE inputs, the released holes travel to the base terminal to decrease the base current. The studied HBT exhibits common-emitter current gains exceeding 47 at low current levels and useful gains spreading over 7 orders of magnitude of collector current.
DC characteristics of an interesting HBT with an InGaAs/InGaAsP composite-collector (CC) structure are studied and reported. Due to the insertion of an InGaAsP setback layer at the base-emitter (B-E) heterojunction, the potential spikes as well as the electron blocking effect are suppressed significantly. In addition, the presence of an effective base-collector (B-C) homojunction can substantially reduce the current blocking effect. The studied device gives impressed dc performance including small offset and saturation voltages without degrading the breakdown behaviors. The typical dc current gain of 118 and the desired current amplification over 11 decades of magnitude of collector current IC are obtained.
On the other hand, a triangular-barrier and a double-barrier structure are combined to form a double-barrier-emitter triangular-barrier optoelectronic switch (DTOS). In the structure center of the triangular barrier, a p-type delta-doped quantum well is inserted to enhance the hole confinement. Owing to the resonant tunneling through the double-barrier structure and avalanche multiplication in the reverse-biased junction, N-shaped and S-shaped negative-differential-resistance (NDR) phenomena occur in the current-voltage (I-V) characteristics under normal and reverse operation modes, respectively. The NDR characteristics show variations from dark to illumination condition. Temperature effects on the NDRs of the DTOS are also obvious. The illumination and temperature influences on the device characteristics are investigated.
Two-terminal switching performances are observed in a new bulk-barrier optoelectronic switch (BBOS) with an AlGaAs/δ(n+)/GaAs/InAlGaP collector structure. The device shows that the switching action takes place from a low current state to a high current state through a region of NDR. The transition from either state to the other may be induced by an appropriate optical or electrical input. It is seen that the effect of illumination increases the switching voltage VS, holding voltage VH, holding current IH and decreases the switching current IS, which is quite different from other reported results. In addition, it possesses obvious NDR even up to 435K. This high-temperature performance provides the studied device with potential high-temperature applications.
References for chapter 1
1. W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, pp. 1630-1635, 1993.
2. W. H. Chiou, H. J. Pan, R. C. Liu, C. Y. Chen, C. K. Wang, H. M. Chuang, and W. C. Liu, “Characterization of InP/InGaAs double-heterojunction bipolar transistors with tunnelling barriers and composite collector structures,” Semicond. Sci. Technol, vol. 17, pp. 87-92, 2002.
3. W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
4. C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
5. W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
6. K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved Temperature-Dependent Performances of a Novel InGaP/InGaAs/GaAs Double Channel Pseudomorphic High Electron Mobility Transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
7. C. S. Lee, W. C. Hsu, J. C. Huang, Y. J. Chen, H. H. Chen, “Monolithic AlAs–InGaAs–InGaP–GaAs HRT-FETS With PVCR of 960 at 300 K,” IEEE Electron Device Lett., vol. 26, no. 2, pp. 50-52, 2005.
8. W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, no. 11, pp. 548-550, 1999.
9. W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 304-306, 1999.
10. H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Electron Device Lett., vol. 50, no. 8, pp. 1717-1723, 2003.
11. C. Y. Lee, M. C. Wu, Y. D. Tian, W. H. Wang, W. J. Ho, T. T. Shi, “Effects of rapid thermal annealing on InAsP/InP strained multiquantum well laser diodes grown by metal organic chemical vapor deposition,” Electronics Lett., vol. 36 , no. 12 , pp.1026 -1028, 2000.
12. C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, “Temperature Dependence of the Radiative Recombination zone in GaN/InGaN Multiple Quantum Well Light Emitting Diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
13. J. I. Chyi, “MBE Growth and Characterization of InGaAs Quantum Dot Lasers,” Materials Sci. and Tech. B, vol. 75, pp. 121-125, 2000.
14. P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L. W. Laih, “1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
15. P. W. Liu, G. H. Liao, and H. H Lin, “1.3 μm GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy,” Electronics Lett., Vol. 40, pp.177 -179, 2004.
16. W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
17. K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, and T. J. Chen, “Novel SiC/Si heterostructure negative-differential-resistance diode for use as switch with high on/off current ratio and low power dissipation,” IEEE Electron Device Lett., vol. 19, no. 8, pp. 294-296, 1998.
18. D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Double-Barrier-Emitter Triangular-Barrier Optoelectronic Switch,” IEEE J. Quantum Electron., vol. 40, pp. 413- 419, 2004.
19. H. C. Wei, Y. H. Wang, and M. P. Houng, “N-shaped negative differential resistance in a transistor structure with a resistive gate,” IEEE Trans. Electron Devices, vol. 41, pp. 1327-1333, 1994.
20. W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp. 1553-1559, 2000.
21. W. C. Liu, L. W. Laih, C. Z. Wu, S. Y. Cheng, and J. H. Tsai, “Observation of the multiple negative-differential-resistance of metal-insulator-semiconductor-like structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Electron Device Lett., vol. 18, pp. 129-131, 1997.
22. W. C. Liu, J. H. Tsai, L. W. Laih, C. Z. Wu, K. B. Thei, W. S. Lour, and D. F. Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, pp. 445-456, 1995.
23. J. H. Tsai, “Application of an AlGaAs–GaAs–InGaAs heterostructure emitter for a resonant-tunneling transistor,” Appl. Phys. lett., vol. 75, pp. 1668–1670, 1999.
24. W. C. Liu, L. W. Laih, S. Y. Cheng, W. L. Chang, W. C. Wang, J. Y. Chen, and P. H. Lin, “Multiple negative-differential-resistance (MNDR) phenomena of a metal-insulator-semiconductor-insulator-metal-like (MISIM) structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Trans. Electron Devices, vol. 45, pp. 373-379, 1998.
25. W. C. Liu, D. F. Guo, S. R. Yih, J. T. Liang, L. W. Laih, and G. M. Lyuu, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 64, pp. 2685-2687, 1994.
26. B. Agarwal, D. Mensa, R. Pullela, Q. Lee, U. Bhattacharya, L. Samoska, J. Guthrie, and M. J. W. Rodwell, “A 277 GHz fmax transferred-substrate heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol. 18, pp. 228-231, 1997.
27. M. T. Fresina, “Design and fabrication of high-performance Indium Gallium Phosphide/Gallium Arsenide heterojunction bipolar transistors,” PH.D. Thesis, University of Illinois, 1996.
28. C. R. Bolognesi, N. Matine, X. Xu, J. Hu, M. W. Dvorak, S. P. Watkins, and M. L. W. Thewalt, “Low-offset NpN InP/GaAsSb/InP double heterojunction bipolar transistors with abrupt interfaces and ballistically launched collector electrons,” IEEE Device Research Conference, Charlotteville, VA June 22-24, 1998.
29. E. Alekseev, and D. Pavlidis, “DC and high frequency performance of AlGaN/GaN heterojunction bipolar transistors,” Solid-State Electronics, Vol. 44, pp. 245-252, 2000.
30. W. C. Liu, W. S. Lour, and D. F. Guo, “A new AlGaAs/GaAs double heterostructure-emitter bipolar transistor prepared by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 60, No. 3, pp. 362-364, 1992.
31. W. C. Liu and W. S. Lour, “An improved heterostructure-emitter bipolar transistor (HEBT),” IEEE. Electron Device Lett., Vol. 12, No. 9, pp. 474-476, 1991.
32. H. H. Lin, and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., Vol. 47, p.839, 1985.
33. W. C. Liu, D. F. Guo, and W. S. Lour, “AlGaAs/GaAs double heterostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Devices, Vol. 39, p. 2740, 1992.
34. H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, pp. 1535-1536, 1957.
35. H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors,” IEEE Electron Device Lett., vol. 15, pp. 336-338, 1994.
36. S. Y. Cheng, H. J. Pan, Y. H. Shie, J. Y. Chen, W. L. Chang, W. C. Wang, P. H. Lin, and W. C. Liu, “Influence of -doping sheet and setback layer on the performance of InGaP/GaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 13, pp. 1187-1192, 1998.
37. W. C. Liu, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Application of -doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998.
38. K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “High-speed InP/InGaAs double-heterostructure bipolar transistors with suppressed collector current blocking,” Appl. Phys. Lett., vol. 62, pp. 2372-2374, 1993.
39. E. F. Chor and C. J. Peng, “Composite step-graded collector of InP/InGaAs DHBT for minimised carrier blocking,” IEE Electron. Lett., vol. 32, pp.1409-1410, 1996.
40. J. C. Vlcek and C. G. Fonstad, “Multiply-graded InGaAlAs heterojunction bipolar transistors,” IEE Electron. Lett., vol. 27, pp.1213-1215, 1991.
41. C. Nguyen, T. Liu, M. Chen, H. C. Sun, and D. Rensch, “AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications,” IEEE Electron Device Lett., vol. 17, pp. 133-135, 1996.
42. A. F. Levi, B. Jalali, and A. Y. Cho, “Vertical scaling in heterojunction bipolar transistors with nonequilibrium base transport,” Appl. Phys. Lett., vol. 60, pp. 460-462, 1992.
43. W. Hafez, J. W. Lai and M. Feng, “InP/InGaAs SHBTs with 75nm collector and fT>500 GHz,” Electronics Lett., vol. 39 , no. 20 , pp.1475-1476, 2003.
44. G. W. Taylor, J. G. Simmons, A. Y. Cho, and R. S. Mand, “A new double heterostructure opto-electronic switching device using molecular beam epitaxy,” J. Appl. Phys., vol. 59, no. 2, pp. 596-600, 1986.
45. W. C. Liu, H. J. Pan, W. C. Wang, S. C. Feng, K. W. Lin, K. H. Yu, and L. W. Laih, “On the multiple negative-differential-resistance (MNDR) InGaP-GaAs resonant tunneling bipolar transistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1054–1059, 2001.
46. Y. K. Fang, C. R. Liu, K. H. Chen, and J. D. Hwang, “A silicon double switching inversion-controlled switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 40, pp. 918–922, 1993.
47. D. F. Guo, “An optoelectronic switch based on a triangular-barrier structure,” IEEE J. Quantum Electron., vol. 34, pp. 1882–1885, 1998.
48. J. Morton, “From Physics to Function,” IEEE Spectr., vol.62, pp.134, 1965.
49. D. F. Guo, L. W. Laih, J. H. Tsai, W. C. Liu, and W. C. Hsu, “Characteristics of a GaAs-InGaAs quantum-well resonant-tunneling switch,” J. Appl. Phys., vol. 77, pp. 2782-2785, 1995.
50. W. C. Liu, L. W. Laih, W. S. Lour, J. H. Tsai, K. W. Lin, and C. C. Cheng, “Multiple-route current-voltage (I-V) characteristics of GaAs-InGaAs metal-insulator semiconductor-like (MIS) structure for multiple-valued logic applications,” IEEE J. Quantum Electron., vol. 32, pp. 1615-1619, 1996.
51. W. C. Wang, H. J. Pan, K. B. Thei, K. W. Lin, K. H. Yu, C. C. Cheng, L. W. Laih, S. Y. Cheng, and W. C. Liu, “Observation of resonant tunneling effect and temperature dependent characteristics of an InP/InGaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 15, pp. 935-940, 2000.
52. S. Y. Cheng, W. C. Liu, W. L. Chang, H. J. Pan, W. C. Wang, J. Y. Chen, S. C. Feng, and K. H. Yu, “Observation of the impulse-like negative-differential-resistance of superlatticed resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 133-135, 1999.
53. D. F. Guo, “A new AlGaAs/GaAs/InAlGaP npn bulk-barrier optoelectronic switch,” IEEE Electron Device Lett., vol. 24, no. 3, pp. 162-164, 2003.
54. D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a new BBOS with an AlGaAs-(n+)-GaAs-InAlGaP collector structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
55. W. C. Hsu, W. C. Liu, D. F. Guo, and W. S. Lour, “GaAs-lnGaAs double delta-doped quantum-well switching device prepared by molecular beam epitaxy,” Appl. Phys. Lett. vol. 62 no.13, pp.1504-1506, 1993.
56. M. C. Wu, and W. T. Tsang, “Quantum-switched heterojunction bipolar transistor,” Appl. Phys. Lett. vol. 55 no.17, pp.1771-1773, 1989.
57. W. C. Liu, C. Y. Sun, and D. F. Guo, “Regenerative switching properties of a sawtooth-doping-superlattice-collector bipolar transistor,” Appl. Phys. Lett., vol. 61, no. 4, pp. 471-473, 1992.
58. T. B. Boykin, R. C. Bowen, G. Klimeck, and K. L. Lear, “Resonant-tunneling diodes with emitter prewells,” Appl. Phys. Lett., vol. 75, pp. 1302-1304, 1999.
59. A. R. Mirabedini, L. J. Mawst, and D. Botez, “High peak-current-density strained-layer In0.3Ga0.7As/Al0.8Ga0.2As resonant tunneling diodes grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 70, pp. 2867-2869, 1997.
60. D. Caputo, G. de Cesare, “A switching device based on a-Si:H n-i-δp-i-n stacked structure: modeling and characterization,” IEEE Trans. Electron Devices, vol. 43, pp. 2109-2112, 1996.
61. K. Board, and M. Darwish, “Properties of a bulk semiconductor barrier with minority carrier injection,” Solid-State Electron., vol. 25, 529-535, 1982.
62. N. Shimizu, T. Nagatsuma, M. Shinagawa, and T. Waho, “Picosecond-switching time of In0.53Ga0.47As/AlAs resonant-tunneling diodes measured by electro-optic sampling technique,” IEEE Electron Device Lett., vol. 16, pp. 262-264, 1995.
63. S. Hutchinson, M. Carr, R. Gwilliam, M. J. Kelly, and B. J. Sealy, “Effect of proton isolation on DC and RF performance of GaAs planar doped barrier diodes,” Electronic Lett., vol. 31, pp. 583-585, 1995.
64. A. Mccowen, S. B. H. Shaari, and K. Board, “Transient analysis of a triangular-barrier bulk unipolar diode,” IEE Proceedings, vol. 135, pp. 107-112, 1988.
65. H. Sakata, Y, Nagao, and Y. Matsushima, “Symmetric triangular-barrier optoelectronic switch (S-TOPS) by gas source MBE,” J. Cryst. Growth vol. 175/176, pp. 1259-1264, 1997.
66. D. F. Guo, C. C. Cheng, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-negative- differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, pp. 4185-4187, 1996.
67. S. J. Kovacic, B. J. Robinson, J. G. Smmons, and D. A. Thompson, “InP/InGaAsP double-heterostructure optoelectronic switch,” IEEE Electron Device Lett., vol. 14, pp. 54-56, 1993.
68. J. I. Pankove, R. Hayes, A. Majerfeld, M. Hanna, E. G. Oh, D. M. Szmyd, D. Suda, S. Asher, R. Matson, D. J. Arent, G. Borghs, and M. G. Harvey, “A pnpn optical switch,” Proc. SPIE OPT. Comput., vol. 963, pp. 191-197, 1988.
69. F. Capasso, S. Sen, F. Beltram, L. M. Lunardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, “Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic,” IEEE Trans. Electron Devices, vol. 36, pp. 2065-2082, 1989.
70. F. Y. Huang and H. Morkoc, “GaAs/InGaAs/AlGaAs optoelectronic switch in avalanche heterojunction phototransistor vertically integrated with a resonant cavity,” Appl. Phys. Lett., vol. 64, pp. 405–407, 1994.
71. G. W. Taylor, J. G. Simmons, A. Y. Cho, and R. S. Mand, “A new double heterostructure optoelectronic switching device using molecular beam epitaxy,” J. Appl. Phys., vol. 59, pp. 596–600, 1986.
72. G. W. Taylor, R. S. Mand, J. G. Simmons, and A. Y. Cho, “Optically induced switching in a p-channel double heterostructure optoelectronic switch,” Appl. Phys. Lett., vol. 49, pp. 1406–1408, 1986.
References for chapter 2
1. J. F. McGilp, “Optical characterisation of semiconductor surfaces and interfaces”, Progress in Surf. Sci., vol. 49, no. 1, pp. 1-106, 1995.
2. M. E. Bartram, W. G. Breiland, L. A. Bruskas, and K. P. Killeen, “Gas chromatography-mass spectroscopy study of tert-butylarsine stability and purification,” J. Cryst. Growth, vol. 216, pp.33-36, 2000.
3. D. E. Aspnes, “Optical approaches to the determination of composition of semiconductor alloys during epitaxy”, IEEE J. Selected Topics Quantum Electron., vol. 1, no. 4 , pp.1054-063, 1995.
4. G. S. Tompa, M. A. Mckee, C. Beckham, P. A. Zawadzki, J. M. Colabella, P. D. Reinert, K. Capuder, R. A. Stall, and P. E. Norris, “A parametric investigation of GaAs epitaxial growth uniformity in a high speed, rotating disk MOCVD reactor,” J. Cryst. Growth, vol. 93, pp.220-227, 1988.
5. D. E. Aspnes, and N. Dietz, “Optical approaches for controlling epitaxial growth”, Applied Surf. Sci., vol.130-132, pp. 367-376, 1998.
References for chapter 3
1. Y. H. Wu, J. S. Su, W. C. Hsu, W. Lin, and W. C. Liu, “Characteristics of In0.53Ga0.47As/InP double and single heterojunction emitter bipolar transistors grown by LP-MOCVD,” Solid-State Electron., vol. 38, no. 4, pp. 767-769, 1995.
2. J. H. Tsai, S. Y. Cheng, W. S. Lour, W. C. Liu, and H. H. Lin, “Investigation of AlInAs/GaInAs heterostructure-emitter-confinement bipolar transistors,” Semicond. Sci. Technol., vol. 12, no. 9, pp. 1135-1139, 1997.
3. H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors”, IEEE Electron Device Lett., Vol. 15, pp. 336 -338, 1994.
4. S. Y. Cheng, H. J. Pan, S. C. Feng, K. H. Yu, and W. C. Liu, “New wide voltage operation regime double heterojunction bipolar transistor,” Solid-State Electron., vol. 44, no. 4, pp. 581-585, 2000.
5. W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
6. W. C. Wang, H. J. Pan, K. B. Thei, K. W. Lin, K. H. Yu, C. C. Cheng, L. W. Laih, S. Y. Cheng, and W. C. Liu, “Observation of resonant tunneling effect and temperature dependent characteristics of an InP/InGaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 15, pp. 935-940, 2000.
7. M. M. ahan, and A. F. M. Anwar, “An exact current partitioning and its effect on base transit time in double heterojunction bipolar transistors”, Solid-State Electron., vol. 39, pp. 941-948, 1996.
8. A. Feygenson, D. Ritter, R. A. Hamm, P. R. Smith, R. K. Montgomery, R. D. Yadvish, H. Temkin, M. B. Panish, “InGaAs/InP composite collector heterostructure bipolar transistors”, Electron. Lett., vol. 28, no.7, pp. 607–609, 1992.
9. Z. Abid, S. P. McAlister, W. R. McKinnon, and E. E. Guzzo, “Temperature dependent DC characteristics of an InP/InGaAs/InGaAsP HBT,” IEEE Electron Device Lett., vol. 15, pp. 178–180, 1994.
10. P. K. Bhattacharya, A. Chin, and K. S. Seo, “A controlled-avalanche superlattice transistor,” IEEE Electron Device Lett., vol. 8, pp. 19-21, 1987.
11. R. Chin, N. Holonyak, G. E. Stillman, J. Y. Tang, and K. Hess, “Impact ionization in multilayered heterojunction structures,” Electronics Lett., vol. 16, pp. 467-469, 1980.
12. M. Tsuji, K. Makita, L. Watanabe, and K. Taguchi, “InAlGaAs impact ionization rates in bulk, superlattice, and sawtooth band structures,” Appl. Phys. Lett., vol. 65, pp. 3248-3250, 1994.
13. P. K. Bhattacharya, Y. Zebda, and J. Singh, “Electron and hole impact ionization coefficients in GaAs/Al0.45Ga0.55As/Al0.3Ga0.7As coupled well systems,” Appl. Phys. Lett., vol. 58, pp. 2791-2793, 1991.
14. B. Jalali, Y. K. Chen, R. N. Nottenburg, D. Sivco, D. A. Humphrey, and A.Y. Cho, “Influence of base thickness on collector breakdown in abrupt AlInAs/InGaAs heterostructure bipolar transistors,” IEEE Electron Device Lett., vol. 11, pp. 400–402, 1990.
15. F. Capasso, J. Allam, A Y. Cho, K. Mohammed, R. J. Malik, A. L. Hutchinson, and D. Sivco, “New avalanche multiplication phenomenon in quantum well superlattices: evidence of impact ionization across the band-edge discontinuity,” Appl. Phys. Lett., vol. 48, pp. 1294-1296, 1986.
16. K. Brennan, T. Wang, and K. Hess, “Theory of electron impact ionization including a potential step: application to GaAs-AlGaAs,” IEEE Electron Device Lett., vol. 6, pp. 199-201, 1985.
17. K. Mohammed, F. Capasso, J. Allam, A. Y. Cho, and A. L. Hutchinson, “New high-speed long-wavelength AsIn0.53Ga0.47/AsIn0.52Al0.48 multiquantum well avalanche photodiodes,” Appl. Phys. Lett., vol. 47, pp. 597-599, 1985.
18. R. People, K. W. Wecht, K. Alavi, and A. Y. Cho, “Measurement of the conduction-band discontinuity of molecular beam epitaxial grown In0.52Al0.48s/In0.53Ga0.47As, N-n heterojunction by C-V profiling,” Appl. Phys. Lett., vol. 43, pp. 188-1296, 1983.
19. D. Ritter, R. A. Hamm, A. Feygenson, and M. B. Panish, “Anomalous electric field and temperature dependence of collector multiplication in InP/Ga0.47In0.53As heterojunction bipolar transistors,” Appl. Phys Lett., vol. 60, pp. 3150–3152, 1992.
20. R. J. Malik, A. Feygenson, D. Ritter, R. A. Hamm, M. B. Panish, J. Nagle, K. Alavi, and A. Y. Cho, “Temperature dependence of collector breakdown voltage and output conductance in HBTs with AlGaAs, GaAs, InP, and InGaAs collectors”, in IEDM Tech. Dig.,pp. 805–808, 1991.
21. D. Cui, D. Pavlidis, S. S. H. Hsu, and A. Eisenbach, “Comparison of DC and high-frequency performance of zinc-doped and carbon-doped InP/InGaAs HBTs grown by metalorganic chemical vapor deposition”, IEEE Electron Device Lett., vol. 49, pp. 725-732, 2002.
22. F. Capasso, H. M. Cox, A. L. Hutchinson, N. A. Olsson, and S. G. Hummel, “Pseudo-quaternary GaInAsP semiconductors: A new Ga0.47In0.53As/InP graded gap superlattice and its applications to avalanche photodiodes”, Appl. Phys. Lett., vol. 45, pp. 1193-1195, 1984.
23. M. Tsuji, K. Makita, L. Watanabe, and K. Taguchi, “InAlGaAs impact ionization rates in bulk, superlattice, and sawtooth band structures,” Appl. Phys. Lett., vol. 65, pp. 3248-3250, 1994.
24. R. J. Malik, N. Chand, J. Nagle, R. W. Ryan, K. Alavi, and A. Y. Cho, “Temperature dependence of common-emitter I-V and collector breakdown voltage characteristics in AlGaAs/GaAs and AlInAs/GaInAs HBTs grown by MBE,” IEEE Electron Device Lett., vol. 13, pp. 557-559, 1992.
References for chapter 4
1. J. C. Fan, C. P. Lee, J. A. Hwang, and J. H. Hwang, “AlGaAs/GaAs Heterojunction Bipolar Transistors on Si substrate using epitaxial lift-off”, IEEE Electron Device Lett., Vol. 16, pp. 393 -395, 1995.
2. C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, Chih-Hung Yen, Sheng-Fu Tsai, Rong-Chau Liu, and Wen-Chau Liu, “Influences of Surface Sulfur Treatments on the Temperature-Dependent Characteristics of Heterojunction Bipolar Transistors (HBTs)” IEEE Trans. Electron Devices, vol. 51, pp. 1963-1971, 2004.
3. H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors”, IEEE Electron Device Lett., Vol. 15, pp. 336 -338, 1994.
4. W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT)”, IEEE Trans. Electron Devices vol. 44, pp. 346-348, 1997.
5. S. Datta, S. Shen, K. P. Roenker, M. M. Cahay, and W. E. Stanchina, “Simulation and design of InAlAs/InGaAs pnp heterojunction bipolar transistors,” IEEE Trans. Electron Dev., vol. 45, pp. 1634 -1643, 1998.
6. W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp. 1553-1559, 2000.
7. U. Eriksson, P. Evaldsson, and K. Streubel, “Fabrication of a 1.55-μmVCSEL and an InGaAsP-InP HBT from a common epitaxial structure,” IEEE Photon. Technol. Lett., vol. 11, pp. 403–405, 1999.
8. W. C. Liu, S. Y. Cheng, H. J. Pan, J. Y. Chen, W. C. Wang, S. C. Feng, and K. H. Yu, “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, no. P8, pp. 1155-1161, 1999.
9. K. Kurijima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors”, IEEE Trans. Electron Devices, vol. 41, pp. 1319-1326, 1994.
10. A. Feygenson, D. Ritter, R. A. Hamm, P. R. Smith, R. K. Montgomery, R. D. Yadvish, H. Temkin, and M. B. Panish, “InGaAs/InP composite collector heterostructure bipolar transistors”, Electron. Lett., vol. 28, no. 7, pp. 607-609,1992.
11. Z.-E. Abid, S. P. McAlister, W. R. McKinnon, and E. E. Guzzo, “Temperature dependent DC characteristics of an InP/InGaAs/InGaAsP HBT,” IEEE Electron Device Lett., vol. 15, pp. 178–180, 1994.
12. W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
13. J. Dangla, C. Dubon-Chevallier, M. Filoche, and R. Azoulay, “Electrical characterisation of the p-type dopant diffusion of highly doped AlGaAs/GaAs heterojunction bipolar transistors grown by MOCVD”, Electron. Lett., vol. 26, no. 14, pp. 607-609,1990.
14. W. Liu, H. -F. Chua, and E. Beam III, “Thermal properties and thermal instabilities of InP-based heterojunction bipolar transistors”, IEEE Trans. Electron Devices, vol. 43, pp. 388-395, 1996.
15. A. Neviani, G. Meneghesso, E. Zanoni, M. Hafizi, and C. Canali, “Positive temperature dependence of electron impact ionization coefficient in In0.53Ga0.47As/InP HBTs”, IEEE Electron Device Lett., Vol. 18, pp. 619 -621, 2000.
16. N. Shamir, D. Ritter, and C. Cytermann, “Beryllium doped InP/InGaAsP heterojunction bipolar transistors,” Solid-State Electron., Vol. 42, pp. 2039-2045, 1998.
17. S. R. Bahl, N. Moll, V. M. Robbins, H. C. Kuo, B. G. Moser, and G. E. Stillman, “Be diffusion in InGaAs/InP heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 332-334, 2000.
18. C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
19. K. Kurijima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “InP/InGaAs double-heterojunction bipolar transistor with step-graded InGaAsP collector”, Electron. Lett., vol. 29, pp. 258-260, 1993.
20. B. Jalali, Y. K. Chen, R. N. Nottenburg, D. Sivco, D. A. Humphrey, and A.Y. Cho, “Influence of base thickness on collector breakdown in abrupt AlInAs/InGaAs heterostructure bipolar transistors,” IEEE Electron Device Lett., vol. 11, pp. 400–402, 1990.
21. R. J. Malik, N. Chand, J. Nagle, R. W. Ryan, K. Alavi, and A.Y. Cho, “Temperature dependence of common-emitter I-V and collector breakdown voltage characteristics in AlGaAs/GaAs and AlInAs/GaInAs HBTs grown by MBE”, IEEE Electron Device Lett., vol. 13, pp. 557-559, 1992.
22. Z. -E. Abid, W. R. Mckinnon, S. P. McAlister, and M. Davies, “InP double heterostructure bipolar transistors with a quaternary collector for improved breakdown behavior,” in Proc. 5th Int. Conf. Indium Phosphide and Related Materials, 1993, pp. 432–434.
23. H. Sato, J. C. Vlcek, C. G. Fonstad, B. Meskoob, and S. Prasad, “InGaAs/InAlAs/InP collector-up microwave heterojunction bipolar transistors”, IEEE Electron Device Lett., vol. 11, pp. 457–459, 1990.
24. D. Ritter, R. A. Hamm, A. Feygenson, H. Temkin, M. B. Panish, and S. Chandrasekhar, “ Bistable hot electron transport in InP/GaInAs composite collector heterojunction bipolar transistor”, Appl. Phys. Lett. Vol. 61, pp. 70-72, 1992.
25. H. Wang, H. Yang, and K. Radhakrishnan, “Theoretical and experimental investigation of temperature-dependent avalanche multiplication in InP-based heterojunction bipolar transistors with InGaAs/InP composite collector”, in Proc. Int. Conf. Indium Phosphide and Related Materials, 2003, pp. 153-155.
26. R. Driad, W. R. McKinnon, S.P. McAlister, A. Renaud, and Z. R.Wasilewski, “Temperature independent current blocking in InAlAs/InGaAs double heterojunction bipolar transistors with composite collectors”, in IEEE Proc. Conf. on Advanced Concepts in High Speed Semiconductor Devices and Circuits, 1997, pp.123 – 131.
27. C. Canali, C. Forzan, A. Neviani, L. Vendrame, E. Zanoni, R. A. Hamm, R. Malik, F. Capasso, and S. Chandrasekhar, “Measurement of the electron ionization coefficient at low electric fields in InGaAsbased heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 66, pp. 1095–1097, 1995.
28. H. Wang, H. Yang, W. -P Neo, K. Radhakrishnan, and C. L. Tan, “Temperature dependence of avalanche multiplication in InP-based HBTs with InGaAs/InP composite collector: device characterization and physics model”, IEEE Trans. Electron Devices, vol. 50, pp. 2335-2343, 2003.
29. N. Shamir, and D. Ritter, “Lower limit of method for the extraction of ionization coefficients from the electrical characteristics of heterojunction bipolar transistors”, IEEE Trans. Electron Dev., vol. 47, pp. 488-490, 2000.
30. H. Wang and G. I. Ng, “Avalanche multiplication in InP/InGaAs double heterojunction bipolar transistors with composite collectors,” IEEE Trans. Electron Devices, vol. 47, pp. 1125–1131, June 2000.
31. P. F. Lu and T. C. Chen, “Collector-base junction avalanche effects in advanced double-poly self-aligned bipolar transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 1182–1188, 1989.
32. J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys., vol. 72, no. 8, pp. 3554–3561, 1992.
References for chapter 5
1. Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT,” IEEE Trans. Electron Devices, vol. 49, pp. 221-225, 2002.
2. W. S. Lour, “Fabrication of voltage-controlled strained-layer quantum well three-terminal switching device,” Solid-State Electronics, vol. 33, pp. 557-560, 1995.
3. W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp.1553-1559, 2000.
4. D. F. Guo, C. C. Cheng, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-negative- differential-resistance switch with double InGaP barriers, ” Appl. Phys. Lett., vol. 69, pp. 4185-4187, 1996.
5. J. H. Tsai, “Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 2668-1670, 1999.
6. S. J. Kovacic, B. J. Robinson, J. G. Smmons, and D. A. Thompson, “InP/InGaAsP double-heterostructure optoelectronic switch,” IEEE Electron Device Lett., vol. 14, pp. 54-56, 1993.
7. Y. Kawamura, H. Asai, S. Matsuo, and C. Amano, “InGaAs-InAlAs multiple quantum well optical bistable devices using the resonant tunneling effect,” IEEE J. Quantum Electron., vol. 28, pp. 308-314, 1992.
8. H. C. Liu, A. G. Steele, M. Buchanan, and Z. R. Wasilewski, “Long-wavelength infrared photoinduced switching of a resonant tunneling diode using the intersubband transition,” IEEE Electron Device Lett., vol. 13, pp. 363-365, 1992.
9. Y. K. Su, R. L. Wang, and Y. H. Wang, “Negative differential resistance in GaAs delta-doping tunneling diodes”, Jpn. J. Appl. Phys., vol. 30, no. 2B, pp. L292-294, 1991.
10. M. C. Wang and W. T. Tsang, “Quantum-switched heterojunction bipolar transistor”, Appl. Phys. Lett., vol. 50, pp. 1771-1773, 1989.
11. T. B. Boykin, R. C. Bowen, G. Klimeck, and K. L. Lear, “Resonant-tunneling diodes with emitter prewells,” Appl. Phys. Lett., vol. 75, pp. 1302-1304, 1999.
12. A. R. Mirabedini, L. J. Mawst, and D. Botez, “High peak-current-density strained-layer In0.3Ga0.7As/Al0.8Ga0.2As resonant tunneling diodes grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 70, pp. 2867-2869, 1997.
13. D. Caputo, G. de Cesare, “A switching device based on a-Si:H n-i-/spl delta/p-i-n stacked structure: modeling and characterization,” IEEE Trans. Electron Devices, vol. 43, pp. 2109-2112, 1996.
14. K. Board, and M. Darwish, “Properties of a bulk semiconductor barrier with minority carrier injection,” Solid-State Electron., vol. 25, 529-535, 1982.
15. N. Shimizu, T. Nagatsuma, M. Shinagawa, and T. Waho, “Picosecond-switching time of In0.53Ga0.47As/AlAs resonant-tunneling diodes measured by electro-optic sampling technique,” IEEE Electron Device Lett., vol. 16, pp. 262-264, 1995.
16. S. Hutchinson, M. Carr, R. Gwilliam, M. J. Kelly, and B. J. Sealy, “Effect of proton isolation on DC and RF performance of GaAs planar doped barrier diodes,” Electronic Lett., vol. 31, pp. 583-585, 1995.
17. A. Mccowen, S. B. H. Shaari, and K. Board, “Transient analysis of a triangular-barrier bulk unipolar diode,” IEE Proceedings, vol. 135, pp. 107-112, 1988.
18. P. England, J. E. Golub, L. T. Florez, and J. P. Harbison, “Optical switching in a resonant tunneling structure,” Appl. Phys. Lett., vol. 58, pp. 887-889, 1991.
19. D. G. Liu, C. P. Lee, K. H. Chang, J. S. Wu, and D. C. Liou, “Delta-doped quantum well structures grown by molecular beam Epitaxy,” Appl. Phys. Lett., vol. 57, pp.1887-1889, 1990.
20. S. C. Kan, S. Wu, S. Sanders, G. Griffel, and A. Yariv, “Optically controlled resonant tunneling in a double-barrier diode,” J. Appl. Phys., vol. 69, pp. 3384-3386, 1991.
21. T. S. Moise, Y. C. Kao, L. D. Garrett, and J. C. Campbell, “Optically switched resonant tunneling diodes,” Appl. Phys. Lett., vol. 66, pp. 1104-1106, 1995.
22. T. S. Moise, Y. C. Kao, C. L. Goldsmith, C. L. Schow, and J. C. Campbell, “High-speed resonant-tunneling photodetectors with low-switching energy,” IEEE Photon. Technol. Lett., vol. 9, pp. 803-805, 1997.
23. J. G. Simmons and G. W. Taylor, “Theory of electron conduction in the double-heterostructure optoelectronic switch (DOES),” IEEE Trans. Electron Devices, vol. 34, pp. 973-970, 1987.
24. S. J. Kovacic, J. G. Simmons, J. P. Noel, D. C. Houghton, and S. Kechang, “Si/SiGe digital optoelectronic switch,” IEEE Electron Device Lett., vol. 12, pp. 439-441, 1991.
25. G. W. Taylor, R. S. Mand, J. G. Simmons, and A. Y. Cho, “Optically induced switching in a p-channel double heterostructure optoelectronic switch,” Appl. Phys. Lett., vol. 49, pp. 1406-1408, 1986.
26. R. J. Malik, K. Board, L. F. Eastman, E. C. E. Wood, T. R. Aucoin and R. L. Ross, “Rectifying variable planar-doped-barrier structures in GaAs,” Inst. Phys. Conf. Ser., pp. 697-710, 1981.
27. R. J. Malik, T. R. Aucoin, R. L. Ross, K. Board, C. E. C. Wood and L. F. Eastman, “Planar-doped barriers in GaAs by molecular beam epitaxy,” Electron. Lett., vol. 16, pp. 836-838, 1980.
28. H. Sakata, Y. Nagao, and Y. Matsushima, “Delta p+-doped InGaAs grown by gas source MBE for novel optoelectronic memory,” J. Crystal Growth., vol. 201/202, pp. 1065-1068, 1999.
29. K. Kasahara, Y. Tashiro, N. Hamao, M. Sugimoto, and T. Yanase, “Double heterostructure optoelectronic switch as a dynamic memory with low-power consumption,” Appl. Phys. Lett., vol. 52, pp. 679-681, 1988.
30. H. Sakata, Y. Nagao, and Y. Matsushima, “Delta p+-doped InGaAs grown by gas source MBE for novel optoelectronic memory,” J. Crystal Growth., vol. 201/202, pp. 1065-1068, 1999.
31. J. I. Pankove, R. Hayes, A. Majerfeld, M. Hanna, E. G. Oh, D. M. Szmyd, D. Suda, S. Asher, R. Matson, D. J. Arent, G. Borghs, and M. G. Harvey, “A pnpn optical switch,” Proc. SPIE OPT. Comput., vol. 963, pp. 191-197, 1988.
32. F. Capasso, S. Sen, F. Beltram, L. M. Lunardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, “Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic,” IEEE Trans. Electron Devices, vol. 36, pp. 2065-2082, 1989.
References for chapter 6
1. Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT,” IEEE Trans. Electron Devices, vol. 49, pp. 221-225, 2002.
2. J. H. Tsai, “Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 2668-1670, 1999.
3. W. C. Liu, H. J. Pan, W. C. Wang, S. C. Feng, K. W. Lin, K. H. Yu, and L. W. Laih, “On the multiple negative-differential-resistance (MNDR) InGaP-GaAs resonant tunneling bipolar transistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1054-1059, 2001.
4. W. S. Lour, “Fabrication of voltage-controlled strained-layer quantum well three-terminal switching device,” Solid-State Electronics, vol. 33, pp. 557-560, 1995.
5. C. L. Wu, W. C. Hsu, H. M. Shieh, and M. S. Tsai, “A novel δ-doped GaAs/lnGaAs real-space transfer transistor with high peak-to-valley ratio and high current driving capability,” IEEE Electron Device Lett., vol. 16, pp. 112-124, 1995.
6. M. Kuijk, P. Heremans, and G. Borghs, “Highly sensitive NpnP optoelectronic switch by AlAs regrowth,” Appl. Phys. Lett., vol. 59, pp. 497-498, 1991.
7. G. W. Taylor, R. S. Mand, A. Y. Cho, and J. G. Simmons, “Experimental realization of an n-channel double heterostructure,” Appl. Phys. Lett., vol. 48, pp. 1368-1370, 1986.
8. G. W. Taylor, R. S. Mand, J. G. Simmons, and A. Y. Cho, “Optically induced switching in a p-channel double heterostructure optoelectronic switch,” Appl. Phys. Lett., vol. 49, pp. 1406-1408, 1986.
9. S. J. Kovacic, J. G.. Simmons, J-P. Noel, D. C. Houghton, and M. Buchanan, “Three-terminal Si/SiGe Digital optoelectronic switch,” Electronic Lett., vol. 28, pp. 292-293, 1992.
10. S. J. Kovacic, B. J. Robinson, J. G. Smmons, and D. A. Thompson, “InP/InGaAsP double-heterostructure optoelectronic switch,” IEEE Electron Device Lett., vol. 14, pp. 54-56, 1993.
11. H. Sakata, K. Utaka, and Y. Matsushima, “High sensitivity and high gain optical functional device: triangular-barrier optoelectronic switch (TOPS),” Electronic Lett., vol. 30, pp. 1972-1973, 1994.
12. D. F. Guo, “Illumination effect on switching performance of a triangular-barrier resonant-tunneling diode,” IEE Proc.-Optoelectronics, vol. 148, pp.121-123, 2001.
13. S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang, and M. H. Chou, “An a-Si:H/a-Si, Ge:H bulk barrier phototransistor with a-SiC:H barrier enhancement layer for high-gain IR optical detector,” IEEE Trans. Electron Devices, vol. 40, pp. 721-726, 1993.
14. G. de Cesare, G. Masini, and F. Palma, “Modeling and realization of a high-gain homojunction a-Si:H bulk barrier phototransistor,” IEEE Trans. Electron Devices, vol. 43, pp. 1077-1084, 1996.
15. P. Papadopoulou, N. Georgoulas, and A. Thanailakis, “Simulation and experimental results on the switching behaviour of bulk-barrier diodes,” Microelectronics Journal, vol. 33, pp. 487-494, 2002.
16. M. O. Watanabe and Y. Ohba, “Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling techniques,” Appl. Phys. Lett., vol. 50, pp. 906-908, 1987.
17. R. Anholt, “Physical compact collector-emitter breakdown model for heterojunction bipolar transistors,” Solid-State Electronics, vol. 41, pp. 1735-1737, 1997.
18. J. J. Chen, G. B. Gao, J. I. Chyi, and H. Morkoc, “Breakdown behavior of GaAs/AlGaAs HBTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2165-2172, 1989.
19. J. G. Simmons and G. W. Taylor, “Theory of electron conduction in the double-heterostructure optoelectronic switch (DOES),” IEEE Trans. Electron Devices, vol. 34, pp. 973-970, 1987.
20. S. J. Kovacic, J. G. Simmons, J. P. Noel, D. C. Houghton, and S. Kechang, “Si/SiGe digital optoelectronic switch,” IEEE Electron Device Lett., vol. 12, pp. 439-441, 1991.
21. R. F. Kazarinov and S. Luryi, “Charge injection over triangular barriers in unipolar semiconductor structures,” Appl. Phys. Lett., vol. 38, pp. 810-812, 1981.
22. S. M. Sze, Physics of Semiconductor Devices, New York: Wiley, 1981.
23. W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Temperature dependence of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1351-1353, 1993.
24. S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications,” J. Appl. Phys., vol. 58, pp. R1-R29, 1985.
25. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys., vol. 53, pp. R123-R181, 1982.
26. H. C. Casey and M. B. Panish, Heterostructure Lasers, New York: Academic, 1978.
27. H. K. Yow, P. A. Houston, C. C. Button, T. W. Lee, and J. S. Roberts, “Heterojunction bipolar transistors in AlGaInP/GaAs grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., vol. 76, pp. 8135-8141, 1994.
References for chapter 7
1. M. Hafizi, T. Liu, P. A. Macdonald, M. Lui, P. Chu, D. Rensch, W. E. Stanchina, and C. S. Wu, “High-performance microwave power AlInAs/GaInAs/InP double heterojunction bipolar transistors with compositionally graded base-collector junction,” in IEDM Tech. Dig., 1993,pp. 791–794.
2. C. Nguyen, T. Liu, M. Chen, H.-C. Sun, and D. Rensch, “AlInAs/GaInAs/InP double heterijunction bipolar transistor with a novel base-collector design for power aplication,” IEEE Electron Device Lett., vol. 17, pp. 133–135, Feb. 1996.
3. Y. H. Wu, J. S. Su, W. C. Hsu, W. Lin, and W. C. Liu, “Characteristics of In0.53Ga0.47As/InP double and single heterojunction emitter bipolar transistors grown by LP-MOCVD ”, Solid-State Electron, Vol.38, No.4, p.767, 1995.
4. Y. Bester, D. Scott, D. Mensa, S. Jaganathan, T. Mathew, and M. J. Rodwell, “InAlAs/InGaAs HBTs with simultaneously high values of ft and fmax for mixed analog/digital applications ”, IEEE Electron Device Lett., Vol. 22, pp.56-58, 2001.
5. H. Kroemer, "Heterostructure bipolar transistors and integrated circuits", IEEE Proc. Vol. 70, p.13, 1982.
6. B. Jalali, R. N. Nottenburg, A. F. J. Levi, R. A. Hamm, M. B. Panish, D. Sivco, and A. Y. Cho, “Base doping limits in heterostructure bipolar transistors,” Appl. Phys. Lett. 56, pp. 1460-1462, 1985.
7. P. Enquist, J. A. Hutchby, and T. J. D. Lyon, “Growth and diffusion of abrupt zinc profiles in gallium arseide and heterojunction bipolar transistor structures grown by organometallic vapor phase epitaxy,” J. Appl. Phys., vol. 63, pp. 4485–4493, 1988.
8. K. Hurishma, T. Kobayashi, and U. Gosele, “Abnormal redistribution of Zn in InP/ InGaAs heterojunction bipolar transistor structures,” Appl. Phys. Lett., vol. 60, pp. 2496–3498, 1992.
9. C. Ito, S. Yamahata, N. Shigekawa, K. Kurishima, and Y. Matsuoka, “High-speed carbon-doped-base InP/InGaAs heterojunction bipolar transistors grown by MOCVD ”, IEE Electronics Lett., Vol.31, pp.2128-2130, 1995.
10. W. P. Hong, J. I. Song, C. J. Palmstrom, B. V. D. Gaag, K. B. Chough, and J. R. Hayes, “DC, RF, and noise characteristics of carbon-doped base InP/InGaAs heterojunction bipolar transistors ”, IEEE Trans. Electron Devices, Vol. 41, No. 1, pp. 19-25, 1994.
11. P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J. Welty, and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP HBTs using graded GaInAsN base regions,” IEEE Electron Device Lett., vol. 23, pp. 582–584, Oct. 2002.
12. N. Y. Li, P. C. Chang, A. G. Baca, X. M. Xie, P. R. Sharps, and H. Q. Hou, “DC characteristics of MOVPE-grown NPN InGaP/InGaAsN DHBTs ”, IEE Electronics Lett., Vol.36, p.81, 2000.
13. R. E. Welser, P. M. DeLuca, and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-x Inx As1-y Ny base layers,” IEEE Electron Device Lett., vol. 21, pp. 554–556, Dec. 2000.
14. A. G. Baca, C. Monier, P. C. Chang, N. Y. Li, F. Newman, E. Armour, S. Z. Sun, and H. Q. Hou, “High-speed performance of npn InGaAsNbased double heterojunction bipolar transistors,” in IEEE GaAs IC Symp. Tech. Dig., 2001, pp. 192–194.
15. D. A. Ahmari, M. T. Fresina, Q. J. Hartman, D.W. Barlage, P. J. Mares, M. Feng, and G. E. Stillman, “High-speed InGaP–GaAs HBTs with a strained In Ga As base,” IEEE Electron Device Lett., vol. 17, pp. 226–228, May 1996.
16. M. T. Fresina, Q. J. Hartmann, and G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors ”, IEEE Electron Device Lett., Vol.17, No.12, pp.555-556, 1996.
17. M. Hafizi, “Submicron, fully self-aligned HBT with an emitter geometry of 0.3m ”, IEEE Electron Device Lett., Vol.18, No.7, pp.358-360, 1997.
18. Q. Lee, S. C. Martin, D. Mensa, R. Pullela, R. P. Smith, B. Agarwal, J. Cuthrie, M. Rodwell, “Deep sub-micron transferred-substrate heterojunction bipolar transistors ”, Device Research Conference Dig., pp. 26-27, 1998.
19. S. Yoshida and J. Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys., vol. 85, pp. 7931–7934, 1999.
20. M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field effect transistor on SiC substrates,” Appl. Phys. Lett., vol. 77, pp. 1339–1341, 2000.
21. T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, “InGaN/GaN tunnel injection blue light emitting diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1093–1095, 2002.
22. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C.Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In Ga N/GaN short-period superlattice tunneling contact layer,” IEEE Electron Device Lett., vol. 22, pp. 460–462, 2001.
23. Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai, and J. M. Tsai, “GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes,” IEEE Sensors J., vol. 2, pp. 366–371, 2002.
24. R. C. Tu, C. J. Tun, J. K. Sheu, W. H. Kuo, T. C. Wang, C. E. Tsai, J. T. Hsu, J. Chi, and G. C. Chi, “Improvement of InGaN/GaN laser diodes by using a Si-doped In0.23Ga0.77N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Lett., Vol. 24, pp.206-208, 2003.
25. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett., vol. 13, pp. 848–850, Aug. 2001.
26. S. Yoshida and J. Suzuki, “Characterization of a GaN bipolar junction transistor after operation at 300 degrees C for over 300 h,” Jpn. J. Appl. Phys., vol. 38, pp. L851–L853, 1999.
27. E. Alekseev and D. Pavlidis, “DC and high-frequency performance of AlGaN/GaN HBT,” Solid-State Electron., vol. 44, p. 245, 2000.
28. D. J. H. Lambert, D. E. Lin, and R. D. Dupuis, “Simulation of the electrical characteristics of AlGaN/GaN heterojunction bipolar transistors,” Solid-State Electron., vol. 44, pp. 253–257, 2000.
29. J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 74, no. 18, pp. 2702–2704, 1999.