| 研究生: |
陳俊年 Chen, Chun-Nien |
|---|---|
| 論文名稱: |
新式混成電路應用於寬頻微小化被動式微波
單/雙平衡混頻器與倍頻器之研製 Implementation of Broadband Miniaturized Passive Microwave Singly/Doubly Balanced Mixers and Doublers Using Novel Hybrid Circuits |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 混頻器 、CMOS 、非對稱寬面耦合 、PHEMT 、巴倫 、功率分配器 、星狀混頻器 、馬遜巴倫 、倍頻器 、慢波架構 |
| 外文關鍵詞: | SBM, CMOS, asymmetrical broadside coupled-lines, PHEMT, balun, star mixer, power divider, Marchand balun, SBD, DBD, slow-wave structure |
| 相關次數: | 點閱:151 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
頻率轉換電路為無線通訊系統的關鍵零組件。本論文以頻率轉換電路的研製為主,分為四部分。第一部分以0.18um CMOS製程實現非對稱寬面耦合混成電路的單平衡混頻器,操作頻率58-68 GHz,轉換損耗19.5-23.4 dB,LO-to-RF隔離度25.3-34.3 dB,LO-to-IF隔離度20.6-21.6 dB,面積約0.18 mm2。第二部分提出以功率分配器與開/短路殘段走線組成的雙重巴倫,以0.25um PHEMT製程實現星狀混頻器,最佳操作頻率為27-36 GHz,轉換損耗6.3-13.6 dB,LO-to-RF隔離度15.3-21.4 dB,LO-to-IF隔離度26.1-34.2 dB,面積約0.81 mm2。第三部分以雙馬遜巴倫與馬遜巴倫組成精簡雙平衡混成電路,以0.15um PHEMT製程實現星狀混頻器,操作頻率16-38 GHz,轉換損耗6.2-15 dB,LO-to-RF隔離度22.2-35.8 dB,LO-to-IF隔離度19-32.1 dB,面積約0.53 mm2。第四部分以慢波架構實現縮小化馬遜巴倫,以0.25um PHEMT製程實現單/雙平衡倍頻器。單平衡倍頻器的輸出頻率25-44 GHz,轉換損耗9-14.3 dB,主頻抑制大於25 dB,面積約0.37 mm2;雙平衡倍頻器的輸出頻率26-39 GHz,轉換損耗10.4-14.6 dB,主頻抑制大於33.7 dB,面積約0.61 mm2。
The frequency conversion circuit is an essential component of wireless communication systems. The implementation of broadband miniaturized frequency conversion circuits is the principal purpose of this thesis. First, a singly balanced mixer (SBM) with a hybrid of asymmetrical broadside coupled-lines is realized through a 0.18 um CMOS process. The measured conversion loss is 19.5-23.4 dB, the LO-to-RF isolation is 25.3-34.3 dB, and the LO-to-IF isolation is 20.6-21.6 dB at 58-68 GHz. The size of the SBM is only 0.18 mm2. Second, a novel dual balun composed of a power divider and open/short stubs is presented, which fabricates a star mixer through a 0.25 um PHEMT process. The measured conversion loss is 6.3 -13.6 dB, the LO-to-RF isolation is 15.3-21.4 dB, and the LO-to-IF isolation is 26.1-34 dB at 27-36 GHz. The chip size of the star mixer is 0.81 mm2. Third, a miniature doubly balanced hybrid composed of a dual Marchand balun and a Marchand balun is utilized to realize a star mixer within 0.53 mm2 of the core area through a 0.15 m PHEMT process. The measured conversion loss is 6.2-15 dB, the LO-to-RF isolation is 22.2-35.8 dB, and the LO-to-IF isolation is 19-32.1 dB at 16-38 GHz. Finally, the miniaturized Marchand balun that employs a slow-wave structure is presented. The structure fabricates a singly balanced doubler (SBD) and a doubly balanced doubler (DBD) through a 0.25 um PHEMT process. The size of the SBD is 0.37 mm2, the measured conversion loss is 9-14.3 dB, and the fundamental suppression is higher than 25 dB at 25-44 GHz. The size of the DBD is 0.61 mm2, the measured conversion loss is 10.4-14.6 dB, and the fundamental suppression is higher than 33.7 dB at 26- 39GHz.
[1]I. D. Robertson, and S. Lucyszyn, RFIC and MMIC Design and Technology. The Institute of Electrical Engineers, London, United Kingdom, 2001.
[2]I. Bahl, and P. Bhartia, Microwave solid state circuit design, Wiley-Interscience, 2003.
[3]S. A. Mass, Microwave Mixers, 2nd ed. Boston, MA: Artech House.
[4]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[5]D. M. Pozar, Microwave and RF design of wireless systems, New York :John Wiley, 2001.
[6]M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and Millimeter-Wave Diode Frequency Multipliers. Boston, MA: Artech House, 1995.
[7]S. A. Maas, Nonlinear Microwave and RF circuits 2nd ed., Artech House, 2003.
[8]S. A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.
[9]H. K. Chiou and T. Y. Yang, “Low-Loss and Broadband Asymmetric Broadside-Coupled Balun for Mixer Design in 0.18-m CMOS Technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no.4, Apr. 2008.
[10]Y. A. Lai, C. M. Lin, C. C. Su, C. P. Chang and Y .H. Wang, “A MMIC Doubler Based on Novel Open/Short Stub Hybrids,” IEEE Microw.Wireless Compon. Lett., vol. 19, no. 4, pp. 242-244, Feb. 2009.
[11]R. Mongia, I. Bahl and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, Inc., Norwood, MA, 1999.
[12]K. S. Ang and I. D. Robertson, “Analysis and design of impedance-transforming planar marchand baluns,” IEEE Trans. Micro.Theory Tech., vol.49, no.2, pp. 402-406, Feb. 2001.
[13]S. Basu and S. A. Mass, “Design and performance of a planar star mixer,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 11, pp. 2028-2030, Nov. 1993.
[14]Rogers, J., and R. Bhatia, “A 6 to 20 GHz Planar Balun Using a Wilkinson Divider and Lange Couplers,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 865-868, 1991.
[15]Sadhir, V., and I. Bahl, “Radial Line Structures for Broadband Microwave Circuit Applications,” Microwave J., vol. 34, pp. 102-123, Aug. 1991.
[16]Bharj, S. S., B. Thompson, and S. P. Tan, “Integrated Circuit 2-18GHz Balun,” Applied Microwave, vol. 2, pp. 110-119, Nov./Dec. 1989.
[17]Boire, D. C., J. E. Degenford, and M. Cohn, “A 4.5 to 18GHz Phase Shifter,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 601-604, 1985.
[18]Minnis, B. J., and M. Healy, “New Broadband Balun Structures for Monolithic Microwave Integrated Circuits, IEEE MTT-S Int. Microwave Symp. Dig., pp. 425-428, 1991.
[19]M. A. Antoniades and G. V. Eleftheriades, “A broadband Wilkinson balun using microstrip metamaterial lines,” IEEE Antennas Wireless Propag. Lett., vol. 4, no. 8, pp. 209-212, Aug. 2005.
[20]Z. Y. Zhang, Y. X. Guo, L. C. Ong, and M. Y. W. Chia, “A new wide-band planar balun on a single-layer PCB,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 416-418, Jun. 2005.
[21]S. S. Bharj, S. P. Tan, and B. Thompson, “A 2-18 GHz 180 degree phase splitter network,” in IEEE MTT-S Symp. Dig., pp. 959-962. 1989.
[22]C. Y. Chang, C. K. Liao, and D. C. Niu, “A 1.5 to 37 GHz ultra-broadband MMIC Mouw’s star mixer,” in Proc. Eur. Microw. Conf., vol. 2, Oct. 4–6, 2005
[23]T. Y. Yang, W. R. Lian, C. C. Yang, and H. K. Chiou, “A compact V -band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp.537–539, Jul. 2007.
[24]K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2435–2440, Jul. 2005.
[25]P. S. Wu, C. S. Lin, T. W. Huang, H. Wang, Y. C. Wang, and C. S. Wu, “A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun,” in Gallium Arsenide and Other Semiconduct. Applicat. Symp., pp. 349–352, October 3–4, 2005.
[26]C.H. Lin, J.C. Chiu, C.M Lin, Y.A. Lai and Y.H. Wang, “A variable conversion gain star mixer for Ka-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, Nov. 2007.
[27]C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 16-44 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620-622, Sep. 2008.
[28]Y. A. Lia, C. C. Su, J. A. Hou, C. M. Lin, and Y. H. Wang, “Implementation of a Quadrature Hybrid for Miniature Mixer Application,” Microwave Optical Technology Letters, vol.51, no.8, pp1843-1845, Aug. 2009.
[29]Y. A. Lai, S. H. Hung, C. N. Chen, and Y. H. Wang, “A Millimeter-Wave Monolithic Star Mixer with Simple IF Extraction Circuit,” J. of Electromagn. Waves and Appl., vol. 23, pp.2433-2440, 2009
[30]G. Oltman, “The compensated balun,” IEEE Trans. Microw. Theory Tech., vol. MTT-14, no. 3, pp. 112-119, Mar. 1966
[31]C. M. Lin, C. H. Lin, J. C. Chiu, and Y. H. Wang, “ An Ultra-Broadband Doubly Balanced Monolithic Ring Mixer for Ku- to Ka-band Applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 733-735, Oct. 2007.
[32]K. Rawat, and F.M. Ghannouchi, “A Design Methodology for Miniaturized Power Dividers Using Periodically Loaded Slow Wave Structure With Dual-Band Applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no.4, Apr. 2008.
[33]T. Fujii, and I. Ohta, “Size-reduction of coupled-microstrip 3 dB forward couplers by loading with periodic shunt capacitive stubs,” in IEEE MTT-S Symp. Dig., pp. 1235-1238. 2005.
[34]H. Y. Chang, G. Y. Chen, and Y. M. Hsin, “A broadband high efficiency high output power frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 226-228, Apr. 2010.
[35]K. L. Deng and H. Wang, “A miniature broadband PHEMT MMIC balanced distributed doubler,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1257-1261, Apr. 2003.
[36]J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “A high-efficiency miniaturized SiGe Ku-band balanced frequency doubler,” in IEEE RFIC Symp. Digest, pp. 219-222, Jun. 2004.
[37]A. Y. K. Chen, Y. Baeyens, Y. K. Chen, and J. Lin, “A 36-80 GHz high gain millimeter-wave double-balanced active frequency doubler in SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 572-574, Sep. 2009.
[38]S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTT-S Int. Dig., pp. 443-446, 1994.