簡易檢索 / 詳目顯示

研究生: 王芷璇
Wang, Chih-Hsuan
論文名稱: 利用光熱泳效應聚集及定量丙型干擾素
Accumulating and Quantifying Interferon-gamma Using Optical Thermophoresis
指導教授: 邱文泰
Chiu, Wen-Tai
共同指導教授: 陳奕帆
Chen, Yih-Fan
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 58
中文關鍵詞: 熱泳效應核酸適體丙型干擾素
外文關鍵詞: thermophoresis, aptamer, interferon-gamma
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究論文,為利用熱泳效應可用來操控分子並且定量分子之特性,結合與特定的目標分子具高度專一性的核酸適體,發展靈敏且快速的檢測方法。許多的研究文獻已指出熱泳可應用於聚集及分析微流體中的微粒子及寡核苷酸。其原理為當給予一熱源,中心點為加熱區而周圍則為冷區域,流體中的微粒子及寡核苷酸會沿著熱源所形成的溫度梯度差而移動。而移動的方向及速率與索瑞特擴散係數有關。微粒子及寡核苷酸的構造、大小、電荷、溶液酸鹼值等等,都是影響熱泳效應的參數。因此,可以藉由改變這些參數來操控微粒子的移動。本研究的目的主要為聚集並且定量丙型干擾素。當人體內的T淋巴球再度暴露在結核分支桿菌抗原下,會釋放出丙型干擾素。丙型干擾素為一種細胞激素,會刺激各種免疫細胞進行一連串的免疫反應。因此,為了潛伏性肺結核篩檢的應用,本研究利用核酸適體來捕捉丙型干擾素,然後利用熱泳效應聚集核酸適體以進行丙型干擾素的定量。由於核酸適體與丙型干擾素結合前後會有結構上的變化,所以兩者的熱泳效應也會有所不同。核酸適體受熱泳效應而聚集的程度會隨著丙型干擾素的濃度而有所變化。研究結果顯示我們可以依據熱泳所造成的聚集程度來定量丙型干擾素,過程中不需要任何繁複的表面修飾與沖洗步驟。

    In this research thesis, we utilized the abilities of thermophoresis for molecular manipulation and quantification. And we aslo utilized highly specific aptamers with particular target molecules. To develop a sensitive and rapid detection method based on thermophoresis. Numerous reseach literatures have indicated that thermophoresis effect could be applied to accumulate and analyze particles and oligonucleotides in the microfluidics. The principle of thermophoresis effect is that when providing a heat source, the center is the heating zone while the periphery is colder region, particles and oligonucleotides in the microfluidics would migrate along the temperature gradient formed by a heat source. While the direction and rate of migration were related to the soret coefficient. And particles and oligonucleotides structure, sizes, charge, pH of solution, etc., would affect the thermophoresis effects. Therefore, we could manipulate particles and oligonucleotides by altering these parameters. The main purpose of this study was the aggregation and quantitation of interferon-gamma. When human body T cells once again exposed to the antigens of Mycobacterium tuberculosis, they would stimulated to release interferon-gamma. Interferon-gamma is a kind of cytokines that it could stimulate a series of immune cells to carry out the immune responses. Therefore, for applications of latent tuberculosis screening, this study utilized aptamers to capture interferon-gamma. Then made use of thermophoresis to accumulate aptamers for quantification of interferon-gamma. Because there were structural changes in aptamers binding to interferon-gamma or not, the thermophoresis effects of both would be different. Level of accumulation aptamers varied due to concentration of interferon-gamma. The results showed that we can quantify interferon-gamma on the basis on the level of accumulation caused by thermophoresis effect. And the process does not require any complicated surface modification and washing steps.

    Abstract I 中文摘要 II 致謝 III Contents IV List of Figure VI Chapter 1 Introduction 1 1.1 Introduction to thermophoresis 1 1.1.1 The effect of thermophoresis 1 1.1.2 Applications of thermophoresis 13 1.2 Background 17 1.3 Motivation and objectives 19 Chapter 2 Materials and Methods 22 2.1 The optical set-up and the flow chambers 22 2.2 Design of the experiments 24 2.2.1 Detecting interferon-gamma using thermophoresis 24 2.2.2 Accelerating combination of antigen and antibody 30 2.3 Sample preparation 33 2.3.1 Detecting interferon-gamma using aptamers 33 2.3.2 Accelerating combination of antigens and antibodies 34 2.4 Optical measurement of the experiment 35 2.4.1 Detecting interferon-gamma using thermophoresis 35 2.4.2 Accelerating combination of antigens and antibodies 35 2.5 Image analysis 36 2.5.1 Detecting interferon-gamma using thermophoresis 36 2.5.2 Accelerating combination of antigens and antibodies 37 Chapter 3 Results and discussion 38 3.1 Temperature measurement 38 3.2 Detecting interferon-gamma using thermophoresis 41 3.3 Accelerating combination of antigens and antibodies 50 Chapter 4 Conclusion 55 References 56

    Abecassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A., & Bocquet, L. (2008). Boosting migration of large particles by solute contrasts. Nature Materials, 7(10), 785-789.
    Akbari, M., Bahrami, M., & Sinton, D. (2012). Optothermal sample preconcentration and manipulation with temperature gradient focusing. Microfluidics and Nanofluidics, 12(1-4), 221-228.
    Baaske, P., Wienken, C. J., Reineck, P., Duhr, S., & Braun, D. (2010). Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angewandte Chemie-International Edition, 49(12), 2238-2241.
    Braibanti, M., Vigolo, D., & Piazza, R. (2008). Does thermophoretic mobility depend on particle size? Physical Review Letters, 100(10), 4.
    Braun, D., & Libchaber, A. (2002). Trapping of DNA by thermophoretic depletion and convection. Physical Review Letters, 89(18), 4.
    Cao, J., Sun, T., & Grattan, K. T. V. (2014). Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B-Chemical, 195, 332-351.
    Chia-Chen, C., Shenhsiung, L., Chung-Han, L., Tsung-Liang, C., Po-Ren, H., Hsin-Chih, L., & Chii-Wann, L. (2012). Amplified surface plasmon resonance immunosensor for interferon-Gamma based on a streptavidin-incorporated aptamer. Biosens Bioelectron, 37(1), 68-74.
    Duhr, S., & Braun, D. (2006). Why molecules move along a temperature gradient. Proceedings of the National Academy of Sciences of the United States of America, 103(52), 19678-19682.
    Goulding, J., Abboud, G., Tahiliani, V., Desai, P., Hutchinson, T. E., & Salek-Ardakani, S. (2014). CD8 T cells use IFN-gamma to protect against the lethal effects of a respiratory poxvirus infection. Journal of Immunology, 192(11), 5415-5425.
    Hammack, A., Chen, Y. L., & Pearce, J. K. (2011). Role of dissolved salts in thermophoresis of DNA: lattice-boltzmann-based simulations. Physical review. E, Statistical, nonlinear, and soft matter physics, 83(3 Pt 1), 031915.
    Hartman-Adams, H., Clark, K., & Juckett, G. (2014). Update on latent tuberculosis infection. American Family Physician, 89(11), 889-896.
    Hong-Ren, J., Wada, H., Yoshinaga, N., & Sano, M. (2009). Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Physical Review Letters, 102(20), 208301 (208304 pp.)-208301 (208304 pp.).
    Hu, J., Wang, S. Q., Wang, L., Li, F., Pingguan-Murphy, B., Lu, T. J., & Xu, F. (2014). Advances in paper-based point-of-care diagnostics. Biosens Bioelectron, 54, 585-597.
    Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P., & Duhr, S. (2011). Molecular interaction studies using microscale thermophoresis. Assay and Drug Development Technologies, 9(4), 342-353.
    Liktor, B., Liktor, B., Liktor, B., Kalman, J., Horvath, B., Sziklai, I., & Karosi, T. (2014). Primary tuberculosis of the middle ear cleft: diagnostic and therapeutic considerations. European Archives of Oto-Rhino-Laryngology, 271(7), 2083-2089.
    Maeda, Y. T., Buguin, A., & Libchaber, A. (2011). Thermal separation: interplay between the soret effect and entropic force gradient. Physical Review Letters, 107(3), 4.
    Maeda, Y. T., Tlusty, T., & Libchaber, A. (2012). Effects of long DNA folding and small RNA stem-loop in thermophoresis. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17972-17977.
    Nechache, A., Cassir, M., & Ringuede, A. (2014). Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review. Journal of Power Sources, 258, 164-181.
    Piazza, R., & Parola, A. (2008). Thermophoresis in colloidal suspensions. Journal of Physics-Condensed Matter, 20(15).
    Pohl, H. A. (1951). The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics, 22(7), 869-871.
    Reineck, P., Wienken, C. J., & Braun, D. (2010). Thermophoresis of single stranded DNA. Electrophoresis, 31(2), 279-286.
    Samy, R., Glawdel, T., & Ren, C. L. (2008). Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B. Analytical Chemistry 80(2), 369-375.
    Schwartz, I. S., Bach, P. J., Roscoe, B., Majury, A., Hopman, W. M., Ellis, E., . . . Wobeser, W. L. (2014). Interferon-gamma release assays piloted as a latent tuberculous infection screening tool in Canadian federal inmates. International Journal of Tuberculosis and Lung Disease, 18(7), 787-792.
    Seidel, S. A., Wienken, C. J., Geissler, S., Jerabek-Willemsen, M., Duhr, S., Reiter, A., . . . Baaske, P. (2012). Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angewandte Chemie International Edition in English, 51(42), 10656-10659.
    Vigolo, D., Buzzaccaro, S., & Piazza, R. (2010). Thermophoresis and thermoelectricity in surfactant solutions. Langmuir, 26(11), 7792-7801.
    Wienken, C. J., Baaske, P., Rothbauer, U., Braun, D., & Duhr, S. (2010). Protein-binding assays in biological liquids using microscale thermophoresis. Nature Communications, 1, 7.
    Wurger, A. (2009). Molecular-weight dependent thermal diffusion in dilute polymer solutions. Physical Review Letters, 102(7), 078302.
    Zhang, W. J., Su, Y., Xu, K. X., Shi, T., & Liu, J. (2010). Method for the detection of various residues based on the same surface plasmon resonance sensor. Acta Chimica Sinica, 68(24), 2574-2580.

    無法下載圖示 校內:2016-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE