簡易檢索 / 詳目顯示

研究生: 廖顯慶
Liao, Hsien-Ching
論文名稱: 固態鎵電池顯微組織特性與充放電機制研究
A Study on Microstructure and Charge-Discharge Mechanism of Solid-State Gallium Batteries
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 鎵電池鎵錫合金浸鍍法固態電解質充放電
外文關鍵詞: Gallium battery, gallium-tin alloy, dipping, solid electrolyte, Charge-discharge
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於高能量密度以及沒有記憶效應的優點,離子電池成為現今二次電池中應用最廣泛的儲能系統,其中又以鋰離子電池佔離子電池的大宗,然而鋰礦的日益稀少、以及會產生鋰枝晶的問題,都使得新型態二次離子電池的研發迫在眉睫。本研究選用鎵作為正極基底材料,具有較高循環穩定性,鎵離子半徑小的特點也使其成為具潛力的離子傳遞選項,後續加入錫做為添加材料,提升整體克電容量表現,並以製程快速的浸鍍法製備電極,改善目前商用泥漿塗佈法過於耗時之缺點。此外,傳統的液態電解液存在爆炸的風險,本研究導入固態電解質,期望能解決安全上的疑慮,進一步將錫箔、純鎵以及石墨作為鎵錫浸鍍正極的負極搭配選項,探討此三種材料作為鎵電池負極材料的適切性。接著,針對上述三者中循環充放電表現最佳者,組構成全固態鎵電池系統,探討對於不同溫度與不同放電電流之應用性,並藉此釐清全電池電化學反應機制。
    實驗結果顯示,錫的添加能提供離子額外的氧化還原電位,提升鎵基正極材料克電容量表現,且隨著錫比例的增加,整體電池電容量持續提升,基於後續工業應用考量,將Ga-30Sn (H)作為最終正極組成。三種搭配負極當中,錫擁有最高電容量表現,然而因體積膨脹效應嚴重而迅速衰退,純鎵電極循環表現優良卻受限於理論克電容的瓶頸,使面電容表現較低,綜合考量循環壽命以及電容量表現,選擇石墨作為最終負極材料。鎵錫/石墨全固態電池在25℃和55℃之下仍可維持穩定,在85℃時,電池由於固態電解質結構崩解以及層間水逸散呈現衰退情況;在不同電流的放電參數下,由二次離子質譜儀結果可得知過高的放電速率會使離子堆積於電極表面而產生極化作用,提高不可逆電容量損失。最終,本研究成功製備出兼具良好循環表現以及高安全性的鎵錫/石墨全固態電池,並解析其充放電機制,可供儲能工業參考。

    Based on the advantages of high energy density and no memory effect, lithium ion batteries have become the most widely used type of secondary batteries today. However, lithium mines are becoming scarcer and lithium dendrites are a big problem, too. In this study, gallium was selected as the base material of the positive electrode, which has high cycle stability. The small radius of gallium ion also makes it a potential ion transfer option. Take tin as an additional material to improve the overall capacity performance. The electrode is prepared by dipping. In addition, the traditional liquid electrolyte has the risk of explosion. In this study, a solid electrolyte is introduced, which is expected to solve safety concerns. Further, tin foil, pure gallium and graphite are used as negative electrode matching options. Then, for the best performance among three negative electrodes, an all-solid-state gallium battery system was built to discuss the applicability to different temperatures and different discharge currents, and to clarify the electrochemical reaction mechanism of the battery.
    It is showed that the addition of tin can provide additional redox potential of ions to improve the performance of capacity. With the increase in the proportion of tin, the overall battery capacity continues to increase. Finally, based on the consideration of subsequent industrial applications, Ga-30Sn (H) as the final positive electrode composition. Among the three types of negative electrodes, consideration both of cycle life and capacitance performance, select graphite as the final anode material. Gallium-tin / graphite all-solid-state batteries can remain stable below 25 ° C and 55 ° C. At 85 ° C, the battery exhibits degradation due to the disintegration of the solid electrolyte structure and the water dissipation between the layers. It can be known that an excessively high discharge rate will cause ions to accumulate on the electrode surface and cause polarization, thereby increasing irreversible capacitance loss. In the end, this study successfully prepared a gallium tin / graphite solid-state battery with good cycle performance and high safety, and analyzed its charge and discharge mechanism.

    中文摘要 I Extended Abstract III 致謝 XVIII 總目錄 XX 表目錄 XXIV 圖目錄 XXV 第一章 前言 1 第二章 文獻回顧 3 2-1 二次離子電池與工作原理 3 2-2 電極製備方式 4 2-2-1 蒸鍍法[6] 4 2-2-2 濺鍍法 5 2-2-3 泥漿塗佈法 5 2-2-4 浸鍍法 6 2-3 鎵基正極材料 6 2-3-1 鎵電極在鋰電池的應用 6 2-3-2 錫元素之添加效益 7 2-4 負極材料 8 2-4-1 錫元素在二次離子電池之應用多樣性 8 2-4-2 石墨負極材料 8 2-5 二次電池電解質種類 9 2-5-1 液態電解液 9 2-5-2 固態電解質 10 2-5-3 鈉基矽酸鹽結構 11 2-5-4 固態電解質之離子傳導理論 12 2-6 高溫充放電機制 13 2-7 高電流充放電機制 14 2-8 負極電動勢與離子親和度 14 2-9 研究目的 15 第三章 實驗步驟與方法 18 3-1 實驗流程概述 18 3-2 實驗電極製備 18 3-2-1 正極電極製備 18 3-2-2 負極電極製備 19 3-3 富鈉處理鈉基矽酸鹽 20 3-4 電池組裝 20 3-5 材料性質分析 21 3-5-1 X-ray繞射分析 21 3-5-2 掃描式電子顯微鏡與能量散佈光譜分析 22 3-5-3 傅立葉轉換紅外線光譜分析 22 3-6 電化學特性分析 23 3-6-1 充放電測試 23 3-6-2 循環伏安分析 23 3-6-3 高溫充放試驗 24 3-6-4 不同放電電流之充放電測試 24 第四章 結果與討論 29 4-1 水系鎵電池鎵基電極材料充放電特性 29 4-1-1 浸鍍鎵電極材料特性分析 29 4-1-2 濕鎵電池充放電循環特性 30 4-1-3 浸鍍鎵電極X-ray繞射分析 32 4-1-4 濕鎵電池循環伏安分析 33 4-2 固態鎵電池鎵錫電極材料充放電特性探討 33 4-2-1 浸鍍鎵錫電極微觀結構分析 34 4-2-2 浸鍍鎵錫電極充放電循環特性 35 4-2-3 浸鍍鎵錫電極X-ray繞射分析 36 4-2-4 Ga-30Sn (H)橫截面分析 36 4-3 固態鎵電池負極材料充放電特性探討 37 4-3-1 負極材料充放電循環特性 37 4-3-2 負極材料充放電前後微觀結構分析 39 4-4 固態鎵錫/石墨電池特性探討 40 4-4-1 不同溫度下鎵錫/石墨電池之充放電循環特性 40 4-4-2 不同溫度下鎵錫/石墨電池之固態電解質FTIR光學特性 41 4-4-3 不同放電電流鎵錫/石墨電池之充放電循環特性 42 4-4-4 不同放電電流鎵錫電極SIMS材料分析 43 4-4-5 鎵錫/石墨電池充放電機制 44 第五章 結論 84 參考文獻 86

    [1] Van Schalkwijk, W., and Scrosati, B. (2002). Advances in lithium ion batteries introduction. In Advances in Lithium-Ion Batteries (1-5). Springer, Boston, MA.
    [2] Pistoia, G. (Ed.). (2013). Lithium-ion batteries: advances and applications. Newnes.
    [3] Hu, Y., Huang, X., Wang, K., Liu, J., Jiang, J., Ding, R., Ji, X. and Li, X. (2010). Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. Journal of Solid State Chemistry, 183(3), 662-667.
    [4] Huie, M. M., Bock, D. C., Takeuchi, E. S., Marschilok, A. C., and Takeuchi, K. J. (2015). Cathode materials for magnesium and magnesium-ion based batteries. Coordination Chemistry Reviews, 287, 15-27.
    [5] Massé, R. C., Uchaker, E., and Cao, G. (2015). Beyond Li-ion: electrode materials for sodium-and magnesium-ion batteries. Science China Materials, 58(9), 715-766.
    [6] Dai, Z. R., Pan, Z. W., and Wang, Z. L. (2003). Novel nanostructures of functional oxides synthesized by thermal evaporation. Advanced Functional Materials, 13(1), 9-24.
    [7] Sigmund, P. (1969). Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical review, 184(2), 383.
    [8] S. Nohara, N. Fujita, S. G. Zhang, H. Inoue, and C. Iwakura, Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni. Journal of Alloys and Compounds, 1998. 267(1-2), 76-78
    [9] Scriven, L. E. (1988). Physics and applications of dip coating and spin coating. MRS Online Proceedings Library Archive, 121.
    [10] Nishida, Y., Nakane, K., and Satoh, T. (1997). Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries. Journal of Power Sources, 68(2), 561-564.
    [11] Deshpande, R. D., Li, J., Cheng, Y. T., and Verbrugge, M. W. (2011). Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. Journal of the Electrochemical Society, 158(8), A845-A849.
    [12] Jalem, R., Rushton, M. J. D., Manalastas Jr, W., Nakayama, M., Kasuga, T., Kilner, J. A., and Grimes, R. W. (2015). Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chemistry of Materials, 27(8), 2821-2831.
    [13] Tang, X., Huang, X., Huang, Y., Gou, Y., Pastore, J., Yang, Y., Xiong, Y., Qian, J., Brock, J., Lu, J. and Xiao, L. (2018). High-Performance Ga2O3 Anode for Lithium-Ion Batteries. ACS applied materials and interfaces, 10(6), 5519-5526.
    [14] Hu, R. Z., Zeng, M. Q., and Zhu, M. (2009). Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition. Electrochimica Acta, 54(10), 2843-2850.
    [15] Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T. (1997). Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science, 276(5317), 1395-1397.
    [16] Kamali, A. R., and Fray, D. J. (2011). Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev. Adv. Mater. Sci, 27(1), 14-24.
    [17] Zhang, T., Fu, L. J., Gao, J., Wu, Y. P., Holze, R., and Wu, H. Q. (2007). Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery. Journal of Power Sources, 174(2), 770-773.
    [18] Singh, N., Arthur, T. S., Ling, C., Matsui, M., and Mizuno, F. (2013). A high energy-density tin anode for rechargeable magnesium-ion batteries. Chemical communications, 49(2), 149-151.
    [19] Slater, M. D., Kim, D., Lee, E., and Johnson, C. S. (2013). Sodium‐ion batteries. Advanced Functional Materials, 23(8), 947-958.
    [20] Lu, Y. C., Ma, C., Alvarado, J., Kidera, T., Dimov, N., Meng, Y. S., and Okada, S. (2015). Electrochemical properties of tin oxide anodes for sodium-ion batteries. Journal of Power Sources, 284, 287-295.
    [21] Kim, D. M., Jung, S. C., Ha, S., Kim, Y., Park, Y., Ryu, J. H., Han Y.K. and Lee, K.T.(2018). Cointercalation of Mg2+ ions into graphite for magnesium ion batteries. Chemistry of Materials, 30(10), 3199-3203.
    [22] Zhu, Z., Cheng, F., Hu, Z., Niu, Z., and Chen, J. (2015). Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. Journal of Power Sources, 293, 626-634.
    [23] Yoshio, M., Brodd, R. J., and Kozawa, A. (2009). Lithium-ion batteries (Vol. 1). New York: Springer.
    [24] Ruffo, R., Wessells, C., Huggins, R. A., and Cui, Y. (2009). Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochemistry communications, 11(2), 247-249.
    [25] Valøen, L. O., and Reimers, J. N. (2005). Transport properties of LiPF6-based Li-ion battery electrolytes. Journal of The Electrochemical Society, 152(5), A882-A891.
    [26] Laheäär, A., Jänes, A., and Lust, E. (2012). NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application. Electrochimica Acta, 82, 309-313.
    [27] Zhou, D., Liu, R., He, Y. B., Li, F., Liu, M., Li, B., Yang, Q., Kang, Q. and Kang, F. (2016). SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 6(7), 1502214.
    [28] Duan, H., Yin, Y. X., Shi, Y., Wang, P. F., Zhang, X. D., Yang, C. P., Shi, J. L., Wen, R., Guo, Y. G., and Wan, L. J. (2017). Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. Journal of the American Chemical Society, 140(1), 82-85.
    [29] Knauth, P. (2009). Inorganic solid Li ion conductors: An overview. Solid State Ionics, 180(14-16), 911-916.
    [30] 李健豪,環保型鈉離子電池材料特性與充放電機制研究,國立成功大學材料科學及工程學系碩士論文,民國108年。
    [31] A. B. Lidiard, Handbuch der Physik, ed. S. Flugge, Vol. 20, (Springer-Verlag, Berlin, 1957), 246.
    [32] M. S. Balogun, W. T. Qiu, F. Y. Lyu, Y. Luo, H. Meng, J. T. Li, W. J. Mai, L. Q. Mai, and Y. X. Tong, All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, (2016). 26
    [33] Kim, J. H., Jung, M. J., Kim, M. J., and Lee, Y. S. (2018). Electrochemical performances of lithium and sodium ion batteries based on carbon materials. Journal of industrial and engineering chemistry, 61, 368-380.
    [34] 何彥廷,固態鎂碳離子電池充放電機制研究,國立成功大學材料科學及工程學系碩士論文,民國108年。
    [35] Savoye, F., Venet, P., Millet, M., and Groot, J. (2011). Impact of periodic current pulses on Li-ion battery performance. IEEE Transactions on Industrial Electronics, 59(9), 3481-3488.
    [36] Tsai, P. C., Chung, S. C., Lin, S. K., & Yamada, A. (2015). Ab initio study of sodium intercalation into disordered carbon. Journal of Materials Chemistry A, 3(18), 9763-9768.
    [37] Anderson, T. J., and Ansara, I. (1992). The Ga-Sn (gallium-tin) system. Journal of phase equilibria, 13(2), 181-189.
    [38] Nuruzzaman, M. D., Rahman, M. M., Liu, Y., and Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of agricultural and food chemistry, 64(7), 1447-1483.
    [39] Gancarz, T. (2017). Density, surface tension and viscosity of Ga-Sn alloys. Journal of Molecular Liquids, 241, 231-236.
    [40] Lei, N., Huang, Z., and Rice, S. A. (1997). Structure of the liquid–vapor interface of a Sn: Ga alloy. The Journal of chemical physics, 107(10), 4051-4060.
    [41] Wang, W., Shen, M., Jiang, L., Song, Q., Liu, S., and Xie, J. (2020). Influence of Mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels. Food Chemistry, 313, 126125.
    [42] Lee, K. T., Jung, Y. S., Kwon, J. Y., Kim, J. H., and Oh, S. M. (2008). Role of electrochemically driven Cu nanograins in CuGa2 electrode. Chemistry of Materials, 20(2), 447-453.
    [43] Tang, X., Huang, X., Huang, Y., Gou, Y., Pastore, J., Yang, Y., Xiong, Y., Qian, J., Brock, J., Lu, J. and Xiao, L. (2018). High-Performance Ga2O3 Anode for Lithium-Ion Batteries. ACS applied materials and interfaces, 10(6), 5519-5526.
    [44] Kepler, K. D., Vaughey, J. T., and Thackeray, M. M. (1999). Copper–tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system. Journal of Power Sources, 81, 383-387.
    [45] Wu, Y., Huang, L., Huang, X., Guo, X., Liu, D., Zheng, D., Zhang, X., Ren, R., Qu, D., and Chen, J. (2017). A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy and Environmental Science, 10(8), 1854-1861.
    [46] Li, T., Liu, B., Liu, H., Zou, J., Ding, Y., Xin, T., and Wang, Y. (2019). Copper and carbon co-encapsulated tin dioxide nanocrystals for high performance lithium ion batteries. Journal of Alloys and Compounds, 774, 565-572.
    [47] Kim, I. T., Allcorn, E., and Manthiram, A. (2015). Cu6Sn5–TiC–C nanocomposite anodes for high-performance sodium-ion batteries. Journal of Power Sources, 281, 11-17.
    [48] Sharma, K. V., Straka, R., and Tavares, F. W. (2017). New cascaded thermal lattice Boltzmann method for simulations of advection-diffusion and convective heat transfer. International Journal of Thermal Sciences, 118, 259-277.
    [49] Zhirong, L., Uddin, M. A., and Zhanxue, S. (2011). FT-IR and XRD analysis of natural Na-bentonite and Cu (II)-loaded Na-bentonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1013-1016.

    無法下載圖示 校內:2025-07-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE