| 研究生: |
陳映婷 Chen, Ying-Ting |
|---|---|
| 論文名稱: |
多維分離技術與標定策略用於蛋白質身分鑑定 Multidimensional Separation and Labeling Strategies for Protein Identification |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | HILIC 管柱 、蛋白質身分鑑定 、蛋白質分離 |
| 外文關鍵詞: | protein separation, protein identification, Hydrophilic interaction liquid chromatography |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物體之蛋白質組成成分十分複雜,若要分析全部組成之蛋白質,樣品之分離步驟便非常重要。由於最終要經由質譜分析完之胜肽片段資訊做蛋白質身分鑑定,所以每次分析的胜肽樣品成分越單純,就越能得到完整之胜肽片段訊息。我的研究目標便是利用多維分離技術來將胜肽樣品的複雜度降低,以提升蛋白質身分鑑定之結果,並在蛋白質階段做分離,搭配穩定同位素二甲基標定策略來對蛋白質做身分鑑定。
在本實驗中,運用散彈槍式蛋白質體學的方法來建立人類乳腺癌細胞MCF-7之蛋白質資料庫。利用不同之多維分離技術來分離MCF-7全細胞蛋白質溶解物,發現具有正交性之多維分離系統-ZIC-HILIC親水性管柱連接奈流C18疏水性管柱,對於蛋白質身分鑑定之結果優於C18疏水性管柱連接奈流C18疏水性管柱系統,且回收率也能大大提升。在ZIC-HILIC親水性管柱連接奈流C18疏水性管柱系統總共可以鑑定到1030個蛋白質、3059個胜肽片段;而C18疏水性管柱連接奈流C18疏水性管柱系統只鑑定到615個蛋白質、1094個胜肽片段,而兩個系統共同鑑定到的數量為蛋白質457個、胜肽片段有902個。
在蛋白質分離部分,發現利用C18管柱分離蛋白質時,有很嚴重的樣品殘留現象,因此選擇C4管柱來分離蛋白質樣品,並且能夠用C4管柱將目標蛋白-雌激素受體純化,並用西方墨點法證明之;再搭配蛋白質標定策略-穩定同位素二甲基標定法,直接在蛋白質層面做標定,可做為研究標靶蛋白質體學的新策略。
The sample separation is a critical step in proteome analysis due to the limitation of mass spectrometry. The more simplicity in sample composition, the more peptide information we can get. In this study, we try to reduce the sample complexity by using multidimensional separation method to obtain a good result of protein identification. Also, we separate the total proteins of human breast cancer cells (MCF-7) at protein level to purify our target protein- estrogen receptor. We also combined ”stable isotope dimethyl labeling” to do the modification at protein level followed with trypsin digestion and mass spectrometry identification.
In multidimensional system, we compared the number of identified proteins using two separation platforms: ZIC-HILIC-nano C18 and C18-nano C18, which only differed in first dimension. 500 μg MCF-7 whole cell lysates were digested into peptides and both systems were used for separation before mass spectrometry identification. Total of 1030 proteins with 3059 peptides were identified using ZIC-HILIC-nano C18 system and 615 proteins with 1094 peptides were identified using C18-nano C18 system. Among these results, there were 457 proteins with 902 peptides existed in both platforms. The HILIC-nano C18 system showed greater separation power since the orthogonality of two separation dimensions.
We also compared the protein separation ability by C4 and C18 columns. We chose C4 column for separation because the mobile phase cannot elute all proteins from C18 and lots of samples retained on beads. After separating MCF-7 whole cell lysate using C4 column, all fractions were collected and ERα were detected using western blotting. The result showed that separation at protein level followed with stable isotope dimethyl labeling is a potential strategy in targeting proteomics.
1. Hong, T.; Nakagawa, T.; Pan, W.; Kim, M. Y.; Kraus, L.; Ikehara, T.; Yasui, K.; Aihara, H.; Takebe, M.; Muramatsu, M.; Ito, T. Isoflavones Stimulate Estrogen Receptor-mediated Core Histone Acetylation. Biochemical and Biophysical Research Communications 2004, 317, (1), 259–264.
2. Osborne, C. K.; Schiff, R.; Estrogen-Receptor Biology: Continuing Progress and Therapeutic Implications. Journal of Clinical Oncology 2005, 23, (8), 1616-1622.
3. Marabotti, A.; Colonna, G.; Facchiano, A. New Computational Strategy to Analyze the Interactions of ERa and ERb with Different ERE Sequences. Journal of Computational Chemistry 2007, 28, (6), 1031–1041.
4. Wilkins, M. R.; Sanchez, J. C.; Gooley, A. A.; Appel, R. D.; Humphery-Smith, I.; Hochstrasser, D. F.; Williams, K. L. Progress with Proteome Projects: Why All Proteins Expressed by a Genome should be Identified and How to do it. Biotechnology and genetic engineering reviews 1996, 13, 19-50.
5. Kahn, P. From Genome to Proteome: Looking at a Cell’s Protein. Science 1995, 270, (20), 369-370.
6. Swinbanks, D. Government Back Proteome Proposal. Nature 1995, 378, (14), 378.
7. Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, (4926), 64-71.
8. Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Analytical Chemistry 1988, 60, (20), 2299-2301.
9. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida Y.; Yoshida, T,. Protein and Polymer Analysis up to m/z 100000 by Laser Ionization Time-of-flight Mass Spectrometry . Rapid communications in mass spectrometry 1988, 2, (8), 151-153.
10. Cleveland, D.W.; Fischer, S.G.; Kirschner, M.W.; Laemmli, U.K. Peptide Mapping by Limited Proteolysis in Sodium Dodecyl Sulfate and Analysis by Gel Electrophoresis. Journal of Biological Chemistry 1997, 252, (3), 1102-1106.
11. Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C. Identifying Proteins from Two-dimensional Gels by Molecular Mass Searching of PeptideFragments in Protein Sequence Databases. Proceedings of the National Academy of Sciences of the United States of America 1993, 90, (11), 5011-5015.
12. 李美貴;凌永健, 液相層析質譜術介面發展與應用.科儀新知 1992,13,(5),38.
13. Yamashita, M.; Fenn, J.B. Electrospray ion source. Another Variation on the Free-jet Theme. The Journal of Physical Chemistry 1984, 88, (20), 4451-4459.
14. Yamashita, M.; Fenn, J.B. Negative Ion Production with the Electrospray Ion Source. The Journal of Physical Chemistry 1984, 88, (20), 4671-4675.
15. McDonald, W.H.; Yates, J.R. Shotgun Proteomics and Biomarker Discovery. Disease Markers 2002, 18, 99-105.
16. Wolters, D.A.; Washburn, M.P., Yates, J.R. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Analytical Chemistry 2001, 73, (23), 5683-5690.
17. Hu, L.; Ye, M.; Jiang, X; Feng, S.; Zou, H. Advances in Hyphenated Analytical Techniques for Shotgun Proteome and Peptidome Analysis—A Review. Analytica Chimica Acta 2007, 598, (2), 193-204.
18. Fournier, M. L.; Gilmore, J. M.; Martin-Brown, S. A.; Washburn, M. P. Multidimensional Separations-Based Shotgun Proteomics. Chemical Review 2007, 107, (8), 3654–3686.
19. Nesvizhskii, A.I. Protein Identification by Tandem Mass Spectrometry and Sequence Database Searching. Methods in Molecular Biology 2007, 367, 87-119.
20. Shibue, M., Mant, C.T., Hodges, R. S. Effect of Anionic Ion-Pairing Reagent Hydrophobicity on Selectivity of Peptide Separations by Reversed-Phase Liquid Chromatography. Journal of Chromatography A 2005, 1080, (1), 68-75.
21. Gygi, S. P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat.Biotechnol 1999, 17, 994-999.
22. Nuwaysir, L. M., Stults, J. T. Electrospray Ionization Mass Spectrometry of Phosphopeptides Isolated by On-Line Immobilized Metal-Ion Affinity Chromatography. Journal of the American Society for Mass spectrometry 1993, 4, 662-669.
23. Posewitz, M. C., Tempst, P. Immobilized Gallium (III) Affinity Chromatography of Phosphopeptides. Analytical Chemistry 1999, 71, (14), 2883-2892.
24. Stensballe, A., Andersen, S., Jensen, O, N. Characterization of Phosphoproteins from Electrophoretic Gels by Nanoscale Fe (III) Affinity Chromatography with Off-Line Mass Spectrometry Analysis. Proteomics 2001, 1, (2), 207-222.
25. Washburn, M. P., Wolters, D., Yates, J. R., 3rd. Large-Scale Analysis of the Yeast Proteome by Multidimensional Protein Identification Technology. Nature Biotechnology 2001, 19, (3), 242-247.
26. Wagner, K., Miliotis, T., Marko-Varga, G., Bischoff, R.,Unger, K. K. An Automated On-Line Multidimensional HPLC System for Protein and Peptide Mapping with Integrated Sample Preparation. Analytical Chemistry 2002, 74, (4), 809-820.
27. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., Gygi, S. P. Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. Journal of Proteome Research 2003, 2, (1), 43-50.
.
28. Kachman, M. T., Wang, H.; Schwartz, D. R., Cho, K. R., Lubman, D. M. Multiplexed Gene Expression Analysis Using the Invader RNA Assay with MALDI-TOF Mass Spectrometry Detection. Analytical Chemistry 2002, 74, (8), 1779-1791
29. Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., McKenna, T., Nold, M. J., Richardson, K., Young, P., Geromanos, S. Quantitative Proteomic Analysis by Accurate Mass Retention Time Pairs Analytical Chemistry 2005, 77, (7), 2187-2200.
30. Guzzetta, A. Reverse Phase HPLC Basics for LC/MS.
31. Hemström, P., Irgum, K. Hydrophilic interaction chromatography. Journal of Separation Science 2006, 29, (12), 1784 – 1821.
32. Alpert, A. J., Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography A 1990, 499, (19), 177-196.
33. Boersema, P. J., Mohammed, S. (et al.). Hydrophilic Interaction Liquid Chromatography (HILIC) in Proteomics. Analytical and Bioanalytical Chemistry 2008, 391, (1), 151–159.
34. Gilar, M., Olivova, P., Daly, A. E., Gebler, J. C. Orthogonality of Separation in Two-Dimensional Liquid Chromatography. Analytical Chemistry 2005, 77, (19), 6426-6434.
35. Boersema, P. J., Divecha, N., Heck, A. J. R., Mohammed, S. Evaluation and Optimization of ZIC-HILIC-RP as an Alternative MudPIT Strategy. Journal of Proteome Research 2007, 6, (3), 937-946.
36. Alpert, A. J. Electrostatic Repulsion Hydrophilic Interaction Chromatography for Isocratic Separation of Charged Solutes and Selective Isolation of Phosphopeptides. Analytical Chemistry 2007, 80, (1), 62–76.
37. Thaysen-Andersen M., Thogersen I. B., Nielsen H. J., Lademann U., Brunner N., Enghild J. J., Hojrup P. Rapid and Individual-specific Glycoprofiling of the Low Abundance N-Glycosylated Protein Tissue Inhibitor of Metalloproteinases-1.Molecular and Cellular Proteomics 2007, 6, 638–647.
38. Garcia, B. A., Pesavento, J. J., Mizzen, C. A., Kelleher, N. L. Pervasive Combinatorial Modification of Histone H3 in Human Cells. Nature Methods 2007, 4, 487-489.
39. Dickson, R. B., Bates, S. E., Mc Manaway, M. E., Lippman, M. E. Characterization of Estrogen Responsive Transforming Activity in Human Breast Cancer Cell Lines. Cancer research 1986, 46, 1707-1713.
40. http://www.abcam.com/MCF-7-Human-breast-adenocarcinoma-cell-line-Whole-cell-lysate-ab3871.html
41. Mukhopadhyay, R., Theriault, R. L., Price, J. E. Increased levels of alpha 6 integrins are associated with the metastatic phenotype of human breast cancer cells. Clinical & experimental metastasis 1999, 17 325-332.
42. http://www.matrixscience.com
43. Shou, W. Z., Naidong, W. Simple Means to Alleviate Sensitivity Loss by Trifluoroacetic acid (TFA) Mobile Phases in the Hydrophilic Interaction Chromatography–Electrospray Tandem Mass Spectrometric (HILIC–ESI/MS/MS) Bioanalysis of Basic Compounds. Journal of Chromatography B 2005, 825, (2), 186 – 192.
44. Jiang, W., Fischer, G., Girmay, Y., Irgum, K. Zwitterionic Stationary Phase with Covalently Bonded Phosphorylcholine Type Polymer Grafts and its Applicability to Separation of Peptides in the Hydrophilic Interaction Liquid Chromatography Mode. Journal of Chromatography A 2006, 1127, (1-2), 82 – 91.
45. Ikegami, T., Horie, K., Jaafar, J., Hosoya, K., Tanaka, N. Preparation of Highly Efficient Monolithic Silica Capillary Columns for the Separations in Weak Cation-Exchange and HILIC Modes. Journal of Biochemical and Biophysical Methods 2007, 70, (1), 31 – 37.
46. Godejohann, M. Hydrophilic Interaction Chromatography Coupled to Nuclear Magnetic Resonance Spectroscopy and Mass Spectroscopy—A New Approach for the Separation and Identification of Extremely Polar Analytes in Bodyfluids. Journal of Chromatography A 2007, 1156, (1-2), 87 – 93.
47. Xu, Y., Sprung, R., Won Kwon, S., Chan Kim, S., Zhao. Y. Isolation of Phosphopeptides by pI-Difference-Based Electrophoresis. Journal of Proteome Research 2007, 6, 1153-1157.
48. 林峰賢, Fluorescein Affinity Enrichment of Cystein-containing Peptides for MS-based Proteomics.國立成功大學碩士論文,2007.
49. Giddings, J. C. Concepts and Comparisons in Multidimensional Separation. Journal of High Resolution Chromatography 1987, 10, (5), 319-323.
50. Jandera, P. Stationary Phases for Hydrophilic Interaction Chromatography, their Characterization and Implementation into Multidimensional Chromatography Concepts. Journal of separation science 2008, 31, (9), 1421 – 1437.
51. Hochstrasser, D. F. Proteome in Perspective. Clinical Chemistry and Laboratory Medicine 1998, 36, 825-836.
52. Aebersold, R., Goodlett, D. R. Mass Spectrometry in Proteomics. Chemical Review 2001, 101, 269-295.
53. Giguére, V., Tremblay, A., Tremblay. G. B. Estrogen Eeceptor ß: Re-Evaluation of Estrogen and Antiestrogen Signaling. Steroids 1998, 63, (5-6), 344-348.
54. Julie, M. H., John, F., Kenneth, S. et al. The Multifaceted Mechanisms of Estradiol and Estrogen Receptor Signaling. Journal of biological chemistry 2001, 276, (40), 36869 - 36872.
55. Katzenellenbogen, B. S., Montano, M. M., Ekena, K. et al. Antiestrogens:Mechanisms of Action and Resistance in Breast Cancer . Breast Cancer Research and Treatment 1997 , 44, 23 - 38.
56. Dotzlaq, H., Leygue, E., Watson, P. H., Murphy, L. C.Expression of Estrogen Receptor-ß in Human Breast Tumors. Journal of clinical endocrinology and metabolism 1997, 82, 2371 – 2374.
57. Nunno, L. D., Larsson, L. G., Rinehart, J. J. et al. Estrogen and Progesterone Receptors in nor Small Cell Lung Caner in 248 Consecutive Patient s who Underwent Surgical Resection . Archives of pathology and laboratory medicine 2000, 124, (10), 1467 - 1468.
58. Deroo, B. J., Korach, K. S. Estrogen Receptors and Human Disease. Journal of clinical investigation 2006, 116, 561-570.