簡易檢索 / 詳目顯示

研究生: 吳昭陵
Wu, Jhao-Ling
論文名稱: 銅析出對鎳銅鋅鐵氧磁體之磁性質與直流疊加特性影響之研究
Copper-rich phase segregation effects on the magnetic properties and DC-bias-superposition characteristic of NiCuZn ferrites
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 冷卻速率鎳銅鋅鐵氧磁體銅析出磁性
外文關鍵詞: NiCuZn ferrites, CuO segregation, DC-bias-superposition
相關次數: 點閱:131下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於可攜式電子產品不斷往多功能方向發展,使得其操作電壓多樣化,進而使得小型化功率晶片電感之需求大增,已成為小型化直流電源轉換器之關鍵元組件,因此如何開發具高導磁係數及優異直流疊加特性之軟性磁性材料,便成為重要之研究課題。本研究利用傳統固態反應法製備不同配方之鎳銅鋅鐵氧磁體,化學組成為Ni0.42Cu0.13+XZn0.45Fe2-XO4;x=0, 0.01, 0.02, 0.04, 0.07, 0.1。探討不同生胚密度、冷卻速率與化學組成對鎳銅鋅鐵氧磁體微結構、磁性質及直流疊加特性之影響。結果發現鎳銅鋅鐵氧磁體可藉由加快冷卻速率或增加氧化銅含量使晶界上有CuO及Cu2O析出,藉由CuO與Cu2O之共晶反應產生液相,進而促進液相燒結之進行,使得燒結最大緻密化溫度下降。在晶界處析出之富銅二次相形成非磁性層,降低作用於鎳銅鋅鐵氧磁體晶粒上之有效磁場強度,進而提升鎳銅鋅鐵氧磁體在磁場作用時之直流疊加特性。

    In this study, the NiCuZn ferrites with the chemical compositions of Ni0.42Cu0.13+XZn0.45Fe2-XO4;x=0, 0.01, 0.02, 0.04, 0.07, 0.1 were prepared using conventional solid-state reaction. The effects of different cooling rates and different chemical compositions of the NiCuZn ferriteson the microstructure, magnetic properties and DC superposition characteristics were investigated. The results showed that the increase of the cooling rate or CuO content in the NiCuZn ferrites led to the precipitation of copper-rich phase at the grain boundaries. The liquid phase resulted from the melting of copper-rich phase during the sintering promoted the liquid phase densification and hence lowering the maximum densification rate temperature.The non-magnetic copper-rich secondary phase at the grain boundaries reduced the effective magnetic field applied on the ferrite grain, and hence enhancing the DC superposition characteristics at low magnetic field. A NiCuZn ferrite with superior initial permeability and DC superposition characteristic can be obtained by changing the cooling rates and CuO content to adjust the non-magnetic copper-rich precipitate thickness at the grain boundaries.

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人研究與基礎理論 3 2.1 晶片電感 3 2-1.1晶片電感之介紹 3 2-2電感材料 6 2-2.1 電感材料-鐵氧磁體 6 2-2.2 尖晶石鐵氧磁體結構 6 2-2.3 鎳銅鋅鐵氧磁體之比例影響特性 9 2-3 液相燒結 14 2-3.1 接觸角 18 2-3.2 溶解度影響 19 2-4 鐵氧磁體之性質 21 2-4.1 初導磁係數 22 2-4.2 磁損失 23 2-4.3 磁異向性 25 2-4.4 磁滯曲線 27 第三章 實驗步驟與方法 29 3-1 改變生胚相對密度與冷卻速率對鐵氧磁體之顯微結構與性質影響 30 3-1.1 試片製備 30 3-2 不同燒結溫度對改變銅鐵比例鐵氧磁體之顯微結構與性質影響 31 3-2.1 粉末製備 32 3-2.2 試片製備 32 3-3 材料特性分析 32 3-3.1 熱收縮分析 32 3-3.2 熱重分析 32 3-3.3 密度量測 33 3-3.4 相鑑定 33 3-3.5 顯微結構分析 33 3-3.6 磁性分析 34 3-3.7 電性分析 34 第四章 結果與討論 35 4-1 改變冷卻速率與生胚密度對鐵氧磁體之顯微結構與性質影響 35 4-1.1 結晶相分析 35 4-1.2 視密度分析 36 4-1.3 顯微結構分析 37 4-1.4熱重分析 43 4-1.5 磁滯曲線分析 44 4-1.6 磁性質分析 47 4-1.7直流疊加特性分析 48 4-2 不同燒結溫度對改變銅鐵比例鐵氧磁體之顯微結構與性質影響 50 4-2.1結晶相分析 50 4-2.2 視密度分析 52 4-2.3 熱收縮行為分析/熱重分析 53 4-2.4 顯微結構分析 55 4-2.5 磁滯曲線分析 61 4-2.6 磁性質分析 64 4-2.7直流疊加特性分析 66 第五章 結論 67 參考文獻 68 附錄 72

    [1] J. Töpfer, J. Mürbe, A. Angermann, S. Kracunovska, S. Barth, F. Bechtold, "Soft ferrite materials for multilayer inductors," Int. J. Appl. Ceram. Technol. 3 [6] 455~462 (2006)
    [2] J.Y. Hsu, H.C. Lin and H.D. Shen, “IEEE Trans. Magn”. 33, 3325 (1997).
    [3] J. Mürbe, J. Töpfer, “Low temperature sintering of sub-stoichiometric Ni–Cu–Zn ferrites: Shrinkage, microstructure and permeability” J. Mag. Mag. Mater. 324 ,578-583,(2012)
    [4] A. Barba, C. Clausell, J. C. Jarque, M. Monzó, "ZnO and CuO crystal precipitation in sintering Cu-doped Ni-Zn ferrites. I. Influence of dry relative density and cooling rate," J. Eur. Ceram. Soc. 31 [12] 2119~2128 (2011)
    [5] Y. S. Qing, L. Qifan “The DC-bias-superposition characteristics of low sinter temperature NiCuZn ferrite” Adv. Mater. Res. Vol. 668 719-722 (2013)
    [6] 柯文淞,「晶片型電子陶瓷材料及元件技術」,工業技術研究院(1993).
    [7] 呂秉軍,「離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響」,國立成功大學資源工程所碩士論文(2012).
    [8] TDK, “High-Precision Multilayering Technology Combines Small Size and High-Q Rating,”Tech Journal (2011).
    [9] 姚壬謙,「化學共沉法製備Co2Z 鐵氧磁體粉末之生成機構研究」,國立成功大學資源工程研究所,碩士論文(2004).
    [10] W. D. Kingery, H. K. Bowen, D. R. Uhlmann著,譯者陳皇鈞,「陶瓷材料概論 (Introduction to Ceramics)」,曉園出版社,臺北市,章節19.3,pp.933~934,(1988年4月初版).
    [11] 金重勳,「磁性技術手冊」,中華民國磁性技術協會(2002).
    [12] K. Sun, Z. W. Lan, Z. Yu, L. Z. Li, J. M. Huang and X. N. Zhao, “Grain Growth, Densification and Magnetic Properties of NiZn Ferrites with Bi2O3 Additive,” J. Phy. D-App. Phy., 41 [23] 235002 (2008).
    [13] 山口喬,柳田博明,剛本祥一,近桂一郎,「磁性陶瓷」,黃忠良譯,復漢出版社,台灣 (2001) .
    [14] 劉向春,「ZnO-TiO2系介電陶瓷/NiCuZn鐵氧磁體疊層低溫共燒兼容特性研究」,西北工業大學,博士論文 (2006).
    [15] Raul Valenzuela,“ Magnetic ceramics, Cambridge University Press, ” NY (1994) .
    [16] Alex Goldman, “Modern ferrite technology, ” Spring, NY (2006)
    [17] W. D. Kingery, H. K. Bowen, D. R. Uhlmann著,譯者陳皇鈞,「陶瓷材料概論 (Introduction to Ceramics)」,曉園出版社,臺北市,章節19.3,pp.938~939,(1988年4月初版).
    [18] L. Schramm, G. Behr, W. Löser, K. Wetzig, "Thermodynamic reassessment of the Cu-O phase diagram," J. Phase Equilib. Diff. 26 [6] 605~621 (2005)
    [19] D. Sakellari, V. Tsakaloudi, E. K. Polychroniadis, V. Zaspalis, " Microstructural phenomena controlling losses in NiCuZn - ferrites as studied by transmission electron microscopy," J. Am. Ceram. Soc. 91 [2] 366~371 (2008)
    [20] I. Z. Rahman, T. T. Ahmed, "A study on Cu substituted chemically processed Ni-Zn-Cu ferrites," J. Magn. Magn. Mater. 290-291 [2] 1576~1579 (2005)
    [21] A. Okamoto, K. Kitamura, T. Yoshid, "Discontinuous grain growth in the sintering of copper-ferrous ferrites," J. Jpn. Soc. Powder Powder Metall. 21 [6] 177~182 (1974)
    [22] C. Guillaund, J. Phys. Rad., 12 239, (1951).
    [23] 陳泰豪,「低溫共燒型介電-磁性陶瓷複合材料」,國立成功大學資源工程所碩士論文(2007) .
    [24] M. Randall, “Liquid phase sintering,”New York (1985) .
    [25] M. M. Costa, G. F. M. Pires Junior, A. S. B. Sombra., “Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite Ba2Co2Fe12O22 (Co2Y),” Mater. Chem. Phys., 123, 35-39 (2010) .
    [26] 楊朝偉,「巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留」,國立成功大學材料科學及工程研究所,碩士論文(2006) .
    [27] 李廷濬,「氧化鉛-氧化銅玻璃添加劑對Co2Z 六方晶系鐵氧磁體燒結及磁性質影響之研究」,義守大學材料科學與工程研究所,碩士論文(2004) .
    [28] S. H. Gee, Y. K. Hong, I. T. Nam, C. Weatherspoon, A. Lyle, and J. C. Sur,“Ba3Co0.8Zn1.2Fe24O41 (Co2Z-Type) Hexaferrite Particles for LTCC Substrates, ”IEEE Trans. Magn., 42, 2843-5(2006).
    [29] X.H. Wang, T.L. Ren, L.T. Li, Z.L. Gui, S.Y. Su, Z.X. Yue, and J. Zhou,“Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrateprecursor mothod, ”J. Magn. Magn.Mater.,234, 255-60(2001).
    [30] P. Lubitz, “New substitution in the hexagonal ferrites to reduce anisotropy without using Co, ”J. Appl. Physi., 87, 4978~80(2000) .
    [31] 康閎竣,「超薄Co膜成長於Pt(111)之表面與磁性的研究」,國立中山大學物理研究所,碩士論文(2007) .
    [32] 鄭振東,「實用磁性材料」,全華科技圖書,pp. 2-24~2-28 (2003出版).
    [33] W. D. Kingery, H. K. Bowen, D. R. Uhlmann著,譯者陳皇鈞,「陶瓷材料概論 (Introduction to Ceramics)」,曉園出版社,臺北市,章節19.3,pp.925~926,(1988年4月初版).
    [34] M. Fujimoto, "Inner stress induced by Cu metal precipitation at grain boundaries in low-temperature-fired Ni-Zn-Cu ferrite," J. Am. Ceram. Soc. 77 [11] 2873~2878 (1994)
    [35] H. Igarashi and K. Okazaki*“Effects of Porosity and Grain Size on the Magnetic Properties of NiZn Ferrite” J. Am. Ceram. Soc. ,Vol. 60,N O.1 -2(1977)
    [36] T.Y.Byun, S. C.Bycon and K. S. Hong,”Factors Affecting Initial Permeability of Co-substituted Ni-Zn-Cu Ferrites,” IEEE Trans. Mag., 35, 3445-3447 (1999).
    [37] X. Tang, H. Zhang, H. Su, Z. Zhong and F. Bai, “Influence of microstructure on the DC-bias-superposition characteristics of NiZn ferrites,” IEEE Trans. Mag., 47, 4332-35 (2011).
    [38] S.H. Hong, J.H.Park, Y.H.Choa, J.Kim “Magnetic properties and sintering characteristics of NiZn(Ag,Cu) ferrite for LTCC applications” J. Mag. Mag. Mater. 290–291 , 1559-1562 (2005)
    [39] M. T. Johnson and E. G. Visser, “A Coherent Model for the Complex Permeability in Polycrystalline Ferrites,” IEEE Trans. Magn., 26(5), pp.1987–1989, 1990.

    下載圖示 校內:2019-08-14公開
    校外:2019-08-14公開
    QR CODE