簡易檢索 / 詳目顯示

研究生: 陳昱霖
Chen, Yu-Lin
論文名稱: 利用正交編碼堆疊方式來實現多重通訊協定標籤交換之資料封包繞送功能
Multi-Protocol Label Switching with Orthogonal Stacking Label Codes to Enhance Data Packets Routing Capability
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 69
中文關鍵詞: 多重通訊協定標籤交換頻域振幅編碼標籤堆疊標籤辨識
外文關鍵詞: Multi-Protocol Label Switching (MPLS), Spectral-amplitude-coding (SAC), Label stacking, Label recognition
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,網際網路已然成為我們生活中不可或缺的一部份,網際網路協定(Internet Protocol, IP)為目前網路最普遍的協定。在一般的網路架構底下,資料封包傳輸是經由網路中的各個路由器來判斷封包的網際網路位址而繞送到目的地。而隨著科技發展,網路需要處理的資訊及多媒體資料快速的增長,使得路由器的處理負荷變大,也會讓網路變得更壅塞。因此,提供更快速的資訊傳輸網路是必須的。近年來,多重通訊協定標籤交換(Multi-Protocol Label Switching, MPLS)技術被視為改善網際網路效能的好方法,路由器在處理封包時不需要拆解封包到網路層,簡化了路由器的轉送功能,使得處理時間可以縮短許多。
    在這篇論文中,我們提出了一個架構用來實現光學的多重通訊協定標籤交換技術,此架構利用頻域振幅編碼(Spectral-Amplitude Coding)光分碼多工技術結合標籤堆疊技術來產生光學標籤,並添加到資料封包上,每個路由器只要判斷封包的標籤來進行快速封包交換,藉以提升封包傳輸的效能。在系統效能分析方面,我們著重在標籤辨識(Label recognition)的部分,考慮了相位引發強度雜訊(Phase-Induced Intensity Noise, PIIN)與熱雜訊(Thermal Noise)對標籤判斷造成的錯誤率。研究結果顯示,隨著堆疊的標籤數增加,標籤錯誤率亦會增大。而要達到更好的錯誤率,我們需要透過使用較大的碼長來編碼標籤。

    Nowadays, internet has become an indispensable part of our life. Internet protocol (IP) is the general protocol in the network. In classical IP network, the data packet is routed to the destination according to its IP address at each router. With the development of technique, the processing load of router becomes huge since the rapid increasing of information and multimedia data. To provide large number of clients searching for high-quality applications, evolvement of internet with faster information transportation is needed. Recent years, multi-protocol label switching (MPLS) presents an answer. It simplifies the forwarding function of routers. Since the label de-composition in network layer is averted, great processing delay is shortened at each node.
    In this thesis, we propose a structure for achieving optical MPLS. This structure uses spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) and label stacking techniques to generate the optical labels and be added to data packet. Each router implements fast label switching by recognizing the stacking labels only. In analyzing the system performance, we emphasize the part of label recognition. We have considered the effects of thermal noise and phase-induced intensity noise (PIIN) which causing the bit error rate of label recognition. The results show that when the number of stacking labels increase, the BER will become large. If we want to achieve better BER, the bigger code length for generating optical labels is need.

    中文摘要 i ABSTRACT ii 誌謝(Acknowledgment) iii CONTENTS iv LIST OF TABLES vi LIST OF FIGURES vii Chapter 1 Introduction 9 1.1 The Concept of Internet 10 1.1.1 The Protocol Hierarchies of Network. 10 1.1.2 The Data Encapsulation and Decapsulation 12 1.2 Packet Routing 14 1.3 The Motivation of Our Research 15 1.4 Thesis Preview 16 Chapter 2 Multi-Protocol Label Switching 17 2.1 The Concept of MPLS 17 2.1.1 The Composing of MPLS Network 18 2.1.2 Label Assignment and Distribution 20 2.1.3 Data Packet Transmission in MPLS Network 24 2.2 The Development of MPLS 26 2.2.1 Virtual Circuit (VC) Network 26 Chapter 3 Overview on Optical CDMA 30 3.1 Optical CDMA Techniques 30 3.2 Spectral Amplitude Coding OCDMA System 32 3.3 Arrayed Waveguide Grating 34 3.4 OCDMA Network Coding 37 3.4.1 Maximal-Length Sequence (M-Sequence) codes 37 3.4.2 AWG-based configuration with M-sequence codes 39 Chapter 4 System Structure and Simulation Setup 43 4.1 Optical MPLS with SAC Labels 43 4.2 System Structure Design 46 4.3 Simulation Setup of Optical Label Switching 49 Chapter 5 Simulation Results and Discussions 54 5.1 Interference Limit 54 5.2 System Performance 56 5.3 Numerical Results 61 Chapter 6 Conclusions 65 References 66

    [1] V.G. CERF and R.E. ICAHN, “A Protocol For packet Network Intercommunication,” IEEE Trans. Communications, Vol. Com-22, No. 5, pp. 637-648, May 1974.
    [2] S.R. Amstutz, “A New Store and Forward Message Switching System,” IEEE Trans. Communication Technology, vol. 19, Issue 4, Aug. 1971.
    [3] H. Zimmermann, “OSI Reference Model--The ISO Model of Architecture for Open Systems Interconnection,” IEEE Trans. Communications, vol. COM-28, no. 4, April 1980.
    [4] D. Meyer, G. Zobrist, “TCP/IP versus OSI,” IEEE Potentials, vol. 9, Issue-1, Feb. 1990.
    [5] S. Savage, D. Wetherall, Anna Karlin, and Tom Anderson, “Network Support for IP Traceback,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, June 2001.
    [6] M.J. O’Mahony, D. Simeonidou, D.K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag., vol. 39, no. 3, pp. 128–135, Mar. 2001.
    [7] J.L. Wu, Y.P. Zhang, “A Layered MPLS Network Architecture,” Wireless Communications Networking and Mobile Computing (WiCOM), 2010.
    [8] Muhammad Romdzi Ahamed Rahimi, Habibah Hashim, Ruhani Ab Rahman, “Implementation of Quality of Service (QoS) in Multi-Protocol Label Switching (MPLS) Networks,” the 5th International Colloquium on Signal Processing & Its Applications (CSPA), 6-8 March 2009.
    [9] U. Black, “MPLS and Label Switching Networks, 2nd ed.,” Englewood Cliffs, NJ: Prentice-Hall, 2002.
    [10] M. Pióro, A. Myslek, A. Jüttner, J. Harmatos, and Á. Szentesi, “Topological Design of MPLS Networks,” Global Telecommunications Conference, GLOBECOM '01. IEEE,vol. 1, 2001.
    [11] S. Kumar Das, P. Venkataram, J. Biswas, “MPLS-BGP based LSP setup techniques,” the 28th Annual IEEE International Conference on Local Computer Networks, LCN 2003.
    [12] P. Newman, T. Lyon, and G. Minshall, “Flow Labelled IP: A Connectionless Approach to ATM,” INFOCOM '96, the 15th Annual Joint Conference of the IEEE Computer Societies-- the Next Generation Networking, vol. 3, Mar. 1996.
    [13] R.H. Hwang, J.F. Kurose, “On Virtual Circuit Routing and Re-Routing in Packet-Switched Networks,” IEEE International Conference on Communications, ICC 1991.
    [14] B.B. Wu and E.E. Narimanov, “A method for secure communications over a public fiber-optical network,” Optics Express, vol. 14, Issue 9, pp. 3738-3751, May 2006.
    [15] J.A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part II: Systems performance analysis,” IEEE Trans. Communications, vol. 37, no. 8, pp. 834–842, Aug. 1989.
    [16] M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” Journal of Lightwave Technology, vol. 13, no. 3, pp. 534-545, Mar. 1995.
    [17] X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, pp. 728–729, Apr. 13, 2000.
    [18] J.F. Huang, D.Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1252-1254, Sept. 2000.
    [19] H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N x N Optical Interconnection,” Journal of Lightwave Technology, vol. 14, no. 6, June 1996.
    [20] L.R. Chen, “Technologies for hybrid wavelength/time optical CDMA transmission,” 2001 Canadian conference on Electrical and Computer Engineering, vol. 1, pp. 435-440, 2001.
    [21] H. Takahashi, K. Oda, Hhma Toba, and Yasuyuki Inoue, “Transmission Characteristics of Arrayed Waveguide N x N Wavelength Multiplexer,” Journal of Lightwave Technology, vol. 13, no. 3, Mar. 1995.
    [22] M. Kavehrad, and D. Zaccarh, “Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherent Sources,” Journal of Lightwave Technology, vol. 13, no. 3, Mar. 1995.
    [23] C. Habib, V. Baby, L.R. Chen, A. Delisle-Simard, and S. LaRochelle, “All-Optical Swapping of Spectral Amplitude Code Labels Using Nonlinear Media and Semiconductor Fiber Ring Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 879-888, May-June 2008.
    [24] J.B. Rosas-Fernandez, S. Ayotte, L.A. Rusch, and S. LaRochelle, “Ultrafast Forwarding Architecture Using a Single Optical Processor for Multiple SAC-Label Recognition Based on FWM,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 868-878, May-June 2008.
    [25] C.C. Yang, J.F. Huang, and S.P. Tseng, “Optical CDMA Network Codecs Structured with M-sequence Codes Over Waveguide-Grating Routers,” IEEE Photonics Technology Letters, vol. 16, no. 2, Feb. 2004.
    [26] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Transactions on Communications, vol. 46, pp. 1176-1185, Sept. 1998.
    [27] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber bragg grating based spectral-amplitude-coding optical CDMA systems,” Journal of Lightwave Technology, vol. 19, no. 9, pp. 1274-1281, Sept. 2001.
    [28] T. Demeechai, “Noise-limited performance of spectral-amplitude-coding optical CDMA in fibre-optic radio highway networks,” IEE Proc. Optoelectronics, vol. 152, no. 5, pp. 269-273, Oct. 2005.
    [29] W. Huang, M. Nakagawa, “Nonlinear effect of direct-sequence CDMA in optical transmission,” IEICE Trans. Commun., vol. E78-B, no. 5, pp.702–708, May 1995.
    [30] J.F. Huang, C.T. Yen, and T.Y. Li, “Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions”, Optical Fiber Technology, vol. 14, no. 3, pp. 247–258, Feb. 2008.

    無法下載圖示 校內:2019-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE