簡易檢索 / 詳目顯示

研究生: 林永慶
Lin, Yung-Ching
論文名稱: 應變速率與溫度在鋁鈧合金動態剪切特性上之效應分析
The Strain Rate and Temperature Dependence of the Dynamic Shear Properties of Al-Sc Alloy
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 溫度鋁鈧合金應變速率動態剪切特性
外文關鍵詞: strain rate, dynamic shear property, Al-Sc alloy, temperature
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要是利用一維彈性扭轉波傳理論為基礎的霍普金森扭轉試驗機,來探討鋁鈧合金在動態剪切荷載下之塑性變形行為。其測試條件為在-150℃、25℃與300℃環境溫度下,剪應變速率分別為800 s-1、1800 s-1與2800 s-1等三組不同的扭轉荷載速度,以研究其在動態荷載下的塑變行為與破壞特性分析,並探討兩者之相關性,同時引用一構成方程式來描述鋁鈧合金在高速剪切荷載下之塑變行為,以做為工程設計與模擬分析之用。

      在巨觀分析中,由實驗結果可以知道,鋁鈧合金的機械性質受剪應變速率、溫度與剪應變量之影響甚鉅。在相同溫度條件下,其塑流剪應力值、破壞剪應變量、加工硬化率、降伏剪強度、加工硬化係數、應變速率敏感性係數與溫度敏感性係數皆會隨著應變速率的提升而增加,而活化能則有相反之趨勢;而在同應變速率條件下,其塑流剪應力值、加工硬化率、降伏剪強度、加工硬化係數、應變速率敏感性係數與溫度敏感性係數皆會隨著環境溫度的提高而下降,而破壞剪應變量與活化能則隨著溫度的提高而增加。

      在微觀分析中,利用掃描式電子顯微鏡(SEM)觀察鋁鈧合金之破壞形貌,可以發現鋁鈧合金的破壞模式均屬於以韌窩為主的延性破壞,且韌窩形貌與密度會隨著應變速率與溫度的不同而有所變化。在光學顯微鏡(OM)金相組織觀察中,顯示斷口處有局部大量的剪切塑性變形,並形成一塑性流動的帶狀區域,在鋁鈧合金中僅觀察到變形式剪切帶,剪切帶的寬度亦會隨著應變速率與溫度的不同而有所變化。剪切帶中微空孔的生成與成長導致最後破壞的發生,且析出物之存在更加劇了微空孔對剪切破壞的生成。

      最後,藉由Kobayashi & Dodd模式之構成方程式能準確地描述鋁鈧合金在不同溫度下的高速剪切塑變行為。

     The dynamic shear deformation behavior and fracture characteristics of Al-Sc alloy are studied using a split-Hopkinson torsional bar at shear strain rates of 800 s-1, 1800 s-1 and 2800 s-1 and temperatures of -150℃, 25℃ and 300℃. The experimental results indicate that shear strain, shear strain rate and temperature all have a significant influence on the mechanical properties of Al-Sc alloy. At constant temperature, the flow shear stress, fracture shear strain, work hardening rate, yielding shear strength, work hardening coefficient, strain rate sensitivity and temperature sensitivity increase with increasing strain rate, while the activation energy decreases. Under a constant strain rate, the flow shear stress, work hardening rate, yielding shear strength, work hardening coefficient, strain rate sensitivity and temperature sensitivity decrease with increasing temperature, while the fracture shear strain and activation energy increase. The fracture surfaces are characterized by dimple features, which are indicative of ductile fracture. The appearance and density of these dimples are significantly dependent on the strain rate and temperature. The fracture surfaces on the gauge length are twisted into band-like features as a result of large localized shear deformation. This phenomenon provides clear evidence of adiabatic shear bands. Only a deformed shear band is found. The width of the shear band is determined by the strain rate and temperature. It is found that microvoid nucleation and growth play a significant role in shear band formation. The presence of precipitates accelerates the adiabatic shear fracture formation via void nucleation and growth. Finally, it is shown that the Kobayashi & Dodd constitutive equation accurately describes the high-strain-rate shear plastic behavior of Al-Sc alloy under the current test conditions.

    中文摘要 I Abstract II 誌 謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 前言 1 第二章 理論與文獻回顧 3 2-1 鋁合金之介紹 3 2-1-1 鋁合金之分類 3 2-1-2 添加合金元素對鋁之影響 3 2-1-3 鋁合金之析出硬化 4 2-2 鋁鈧合金之介紹 5 2-3 塑性變形之機械測試類別 7 2-4 一維扭轉波傳理論 8 2-5 霍普金森扭轉試驗機原理 11 2-6 材料塑性變形行為之特性 13 2-7 材料變形構成方程式 16 第三章 實驗方法與步驟 30 3-1 試件之製作 30 3-2 實驗儀器設備 31 3-2-1 霍普金森扭轉試驗機 31 3-2-2 訊號處理裝置 32 3-2-3 掃描式電子顯微鏡 (SEM) 32 3-2-4 光學顯微鏡 (OM) 33 3-2-5 微小硬度試驗機 (Micro-Hardness Tester) 33 3-3 實驗方法與步驟 33 3-3-1 動態扭轉試驗 33 3-3-2 破斷面之觀察 (SEM) 34 3-3-3 試件金相之觀察 (OM) 34 3-3-4 試件之微硬度分析 35 第四章 實驗結果與討論 40 4-1 剪應力-剪應變曲線之討論 40 4-2 加工硬化率之探討 41 4-3 應變速率效應 44 4-4 溫度效應 45 4-5 活化能 45 4-6 理論溫升量 47 4-7 材料變形構成方程式 48 4-8 微觀分析 49 4-8-1 破壞形貌觀察 (SEM) 49 4-8-1-1 試件破斷面形貌之觀察 49 4-8-1-2 試件破壞形貌之觀察 50 4-8-1-3 析出物之觀察 52 4-8-2 金相組織觀察 (OM) 53 4-8-3 剪切帶上微硬度分析 54 第五章 結論 99 參考文獻 101

    1. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 80-91, 1992.
    2. S. Lathabai and P. G. Lloyd, “The Effect of Scandium on the Microstructure, Mechanical Properties and Weldability of a Cast Al-Mg Alloy,” Acta Materialia, Vol. 50, pp. 4275-4292, 2002.
    3. Yu. A. Filatov, V. I. Yelagin and V. V. Zakharov, “New Al-Mg-Sc Alloys,” Materials Science and Engineering A, Vol. 280, pp. 97-101, 2000.
    4. D. N. Seidman, E. A. Marquis and D. C. Dunand, “Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys,” Acta Materialia, Vol. 50, pp. 4021-4035, 2002.
    5. K. Venkateswarlu, L. C. Pathak, A. K. Ray, Goutam Das, P. K. Verma, M. Kumar and R. N. Ghosh, “Microstructure, Tensile Strength and Wear Behaviour of Al-Sc Alloy,” Materials Science and Engineering A, Vol. 383, pp. 374-380, 2004.
    6. E. A. Marquis, D. N. Seidman and D. C. Dunand, “Effect of Mg Addition on the Creep and Yield Behavior of an Al-Sc Alloy,” Acta Materialia, Vol. 51, pp. 4751-4760, 2003.
    7. Yu. V. Milman, D. V. Lotsko and O. I. Sirko, “’Sc Effect’ of Improving Mechanical Properties in Aluminum Alloys,” Materials Science Forum, Vol. 331, pp. 1107-1112, 2000.
    8. B. A. Parker, Z. F. Zhou and P. Nolle, “The Effect of Small Additions of Scandium on the Properties of Aluminum Alloys,” Journal of Materials Science, Vol. 30, pp. 452-458, 1995.
    9. M. N. Desmukh, R. K. Pandey and A. K. Mukhopadhyay, “Fatigue Behavior of 7010 Aluminum Alloy Containing Scandium,” Scripta Materialia, Vol. 52, pp. 645-650, 2005.
    10. C. Watanabe, C. Y. Jin, R. Monzen and K. Kitagawa, “Low-cycle Fatigue Behavior and Dislocation Structure of an Al-Mg-Sc Alloy,” Materials Science and Engineering A, Vol. 387-389, pp. 552-555, 2004.
    11. T. Wirtz, G. , A. Gysler, B. Lenczowski and R. Rauh, “Fatigue Properties of the Aluminum Alloys 6013 and Al-Mg-Sc,” Materials Science Forum, Vol. 331, pp. 1489-1494, 2000.
    12. O. Roder, T. Wirtz, A. Gysler and G. , “Fatigue Properties of Al-Mg Alloys with and without Scandium,” Materials Science and Engineering A, Vol. 234-236, pp. 181-184, 1997.
    13. F. Musin, R. Kaibyshev, Y. Motohashi and G. Itoh, “High Strain Rate Superplasticity in a commercial Al-Mg-Sc Alloy,” Scripta Materialia, Vol. 50, pp. 511-516, 2004.
    14. K. T. Park, D. Y. Hwang, Y. K. Lee, Y. K. Kim and D. H. Shin, “High Strain Rate Superplasticity of Submicrometer Grained 5083 Al Alloy Containing Scandium Fabricated by Severe Plastic Deformation,” Materials Science and Engineering A, Vol. 341, pp. 273-281, 2003.
    15. D. W. Suh, S. Y. Lee, K. H. Lee, S. K. Lim and K. H. Oh, “Microstructural Evolution of Al-Zn-Mg-Cu-(Sc) Alloy during Hot Extrusion and Heat Treatment,” Journal of Materials Processing Technology, Vol. 155-156, pp. 1330-1336, 2004.
    16. S. Celotto and T. J. Bastow, “45Sc Nuclear Magnetic Resonance Analysis of Precipitation in Dilute Al-Sc Alloys,” Philosophical Magazine A, Vol. 80, No. 5, pp. 1111-1125, 2000.
    17. T. Torma, E. Kovacs-Csetenyi, T. Turmezey, T. Ungar and I. Kovacs, “Hardening Mechanisms in Al-Sc Alloys,” Journal of Materials Science, Vol. 24, pp. 3924-3927, 1989.
    18. L. I. Kaygorodova and V. P. Domashnikov, “Investigation of the Influence of Scandium of the Structure and Properties of an Aluminum-Magnesium Alloy during Natural Ageing,” Physics of Metals and Metallography, Vol. 68, No. 4, pp. 160-166, 1989.
    19. N. Blake and M. A. Hopkins, “Constitution and Age Hardening of Al-Sc Alloys,” Journal of Materials Science, Vol. 20, pp. 2861-2867, 1985.
    20. M. Ye. Drits, L. B. Ber, YU. G. Bykov, L. S. Toropova and G. K. Anastas’eva, “Ageing of Alloy Al-0.3 at.% Sc,” Physics of Metals and Metallography, Vol. 57, No. 6, pp. 118-126, 1984.
    21. M. J. Jones and F. J. Humphreys, “Interaction of Recrystallization and Precipitation: The Effect of Al3Sc on the Recrystallization Behaviour of Deformed Aluminum,” Acta Materialia, Vol. 51, pp. 2149-2159, 2003.
    22. Y. W. Riddle and T. H. Sanders, Jr., “Contribution to Al3Sc to Recrystallization Resistance in Wrought Al-Sc Alloys,” Materials Science Forum, Vol. 331, pp. 939-944, 2000.
    23. T. D. Rostova, V. G. Davydov, V. I. Yelagin and V. V. Zakharov, “Effect of Scandium on Recrystallization of Aluminum and Its Alloys,” Materials Science Forum, Vol. 331, pp. 793-798, 2000.
    24. Y. Miura, T. Shioyama and D. Hara, “Recrystallization of Al-3Mg and Al-3Mg-0.2Sc Alloys,” Materials Science Forum, Vol. 217-222, pp. 505-510, 1996.
    25. M. Ferry, N. E. Hamilton and F. J. Humphreys, “Continuous and Discontinuous Grain Coarsening in a Fine-Grained Particle-Containing Al-Sc Alloy,” Acta Materialia, Vol. 53, pp. 1097-1109, 2005.
    26. S. Iwamura and Y. Miura, “Loss in Coherency and Coarsening Behavior of Al3Sc Precipitates,” Acta Materialia, Vol. 52, pp. 591-600, 2004.
    27. J. R. Davis, Aluminum and Aluminum Alloys, ASM Specialty Handbook, pp. 31, 1994.
    28. G. E. Totten and D. S. MacKenzie, Handbook of Aluminum, Volume 1, Physical Metallurgy and Processes, pp. 881-914,2003.
    29. 金重勳, 機械材料, 復文書局, pp. 363-381, 1995.
    30. 邱傳聖, 洪衛朋, 吳昇憲, “高強度含鈧Al-Zn-Mg-Cu合金之熱處理機械性質及顯微結構之研究,” 碩士論文, 私立元智大學, pp. 15-23, 2002.
    31. A. F. Norman, P. B. Prangnell and R. S. McEwen, “The Solidification Behaviour of Dilute Aluminum-Scandium Alloys,” Acta Materialia, Vol. 46, pp. 5715-5732, 1998.
    32. V. G. Davydov, T. D. Rostova, V. V. Zakharov, Y. A. Filatov and V. I. Yelagin, “Scientific Principles of Making an Alloying Addition of Scandium to Aluminum Alloys,” Materials Science and Engineering A, Vol. 280, pp. 30-36, 2000.
    33. M. A. Meyers and L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, pp. 129-167, 1981.
    34. ASM Handbook Committee, Metals Handbook, American Society for Metals, pp. 215-230, 1978.
    35. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Testing: Tension and Compression,” Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
    36. M. A. Meyers, Dynamic Behavior of Materials, A Wiley-Interscience Publication, pp. 23-65, 1994.
    37. J. D. Campbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects,” Materials and Science Engineering, Vol. 12, pp. 3-21, 1973.
    38. D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys,” Vol. III, ASM, pp. 951, 1970.
    39. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
    40. A. M. Eleiche and J. D. Campbell, “Strain-Rate Effects During Reverse Torsional Shear,” Experimental Mechanics, Vol. 16, pp. 281-290, 1976.
    41. J. Harding and J. Huddart, “The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain,” Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
    42. A. Seeger, “The Generation of Lattice Defects by Moving Dislocations, and its Application to the Temperature Dependence of the Flow-Stress of FCC Crystals,” The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
    43. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
    44. H. Conrad, “Thermally Activated Deformation of Metals,” Journal of Metals, pp. 582-588, 1964.
    45. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
    46. J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
    47. J. Harding, “The Effect of High Strain Rate on Material Properties,” Materials at High Strain Rate on Material Properties, pp. 133-186, 1987.
    48. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
    49. J. D. Campbell, A. M. Eleiche, and M. C. C. Tsao, Fundamental Aspects of Structural Alloy Design, Plenum Publishing Corp. New York, pp. 545-563, 1977.
    50. R. W. Klopp, R. J. Clifton and T. G. Shawki, “Pressure Shear Impact and Dynamic Viscoplastic Response of Metals,” Mechanics of Materials, Vol. 4, pp. 375-385, 1985.
    51. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
    52. F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels,” in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and other Advanced Materials, AD-Vol. 48, pp. 121-126, 1995.
    53. H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth,” International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
    54. A. S. Khan and H. Zhang, “Mechanically Alloyed Nanocrystalline Iron and Copper Mixture: Behavior and Constitutive Modeling over a Wide Range of Strain Rates,” International Journal of Plasticity, Vol. 16, pp. 1477-1492, 2000.
    55. R. Liang and A. S. Khan, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures,” International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.
    56. L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel,” Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
    57. B. Q. Han, E. J. Lavernia and F. A. Mohamed, “Mechanical Behavior of a Cryomilled Near-Nanostructured Al-Mg-Sc Alloy,” Metallurgical and Materials Transactions A, Vol. 36A, pp. 345-355, 2005.
    58. Y. Harada and D. C. Dunand, “Creep Properties of Al3Sc and Al3(Sc, X) Intermetallics,” Acta Materialia, Vol. 48, pp. 3477-3487, 2000.
    59. C. Watanabe, T. Kondo and R. Monzen, “Coarsening of Al3Sc Precipitates in an Al-0.28 Wt Pct Sc Alloy,” Metallurgical and Materials Transactions A, Vol. 35A, pp. 3003-3008, 2004.
    60. E. A. Marquis and D. N. Seidman, “Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys,” Acta Materialia, Vol. 49, pp. 1909-1919, 2001.
    61. R. Kapoor and S. Nemat-Nasser, “Determination of Temperature Rise during High Strain Rate Deformation,” Mechanics of Materials, Vol. 27, pp. 1-12, 1998.
    62. 李偉賢, 程仁毅, “304L不銹鋼之惰性氣體鎢棒電弧銲及遮蔽金屬電弧銲銲接件在動態剪切荷載下的塑變行為與破壞特性分析,” 碩士論文, 國立成功大學, pp. 108, 2002.

    下載圖示 校內:2006-07-04公開
    校外:2006-07-04公開
    QR CODE