簡易檢索 / 詳目顯示

研究生: 林政德
Lin, Cheng-Te
論文名稱: 利用ε-NTU法分析非共沸冷媒之冷凝器性能
Performance Analysis for A Condenser with Zeotropic Refrigerants by ε-NTU Method
指導教授: 邱政勳
Chiou, Jenq-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系碩士在職專班
Department of Mechanical Engineering (on the job class)
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 99
中文關鍵詞: 非共沸冷媒ε -NTU法溫度滑移
外文關鍵詞: Zeotropic Refrigerant, Temperature Glide, ε–NTU Method
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用數值軟體來輔助氣冷式冷凝器的設計已經相當普遍,但當冷媒為非共沸冷媒時,其預測值往往不準確,其中最主要的原因是非共沸冷媒在相變化過程中有溫度的滑移現象及冷凝過程中成份冷媒間的質傳熱阻抗會對熱交換器性能產生影響。
    為了能夠更準確地預測非共沸冷媒冷凝器性能,本研究將一冷凝器切割為多個區塊,每個區塊視為單一熱交換器,並利用 –NTU model來模擬。在進行整體飽和區域的熱傳計算時,由於區塊的細分,各個區塊的溫度滑移量減低而可忽略,等該區塊計算完成後再利用設定下游區塊入口條件來加以考量。對於成份冷媒間的質傳阻抗效應,本研究也利用文獻發表的修正式來提高計算精度。
    為了驗証此程式之準確性,我們進行各種氣冷式冷凝器的模擬並與文獻實驗數據比較,發現預測誤差值在可接受範圍之內,最後吾人利用此程式評估一使用R-407C冷媒之通用型氣冷式冷凝器性能,此冷凝器之熱交換管為微鰭管而鰭片為波浪型鰭片,並得到優化的鰭片數與空氣表面風速。

    It has been a common practice for using a computer code to design an air-cooled condenser. However, the prediction is often too optimistic if the same code developed for pure refrigerants is directly applied for zeotropic refrigerants. This kind of prediction discrepancy is believed caused by the temperature glide and the extra resistance due to the mass transfer during the condensing process of a zeotropic refrigerant.
    In this study, the condenser is divided into many blocks. The degree of temperature glide of block in the saturated area will become relatively small for neglect during simulation, and then can be solved by the –NTU method. After each simulation in saturated area, the effect of temperature glide will take into consideration by setting the outlet condition of downstream block. The effect extra thermal resistance due to the mass transfer during condensing process is considered by using the modified correlations published in literatures for zoetropic refrigerants.
    We adopted various test datas published in literatures to verify the developed computer program, and the predicted results are generally agreed with experimental data. This program is then applied the design a typical air-cooled condenser. The working fluid of this condenser is R-407C refrigerant flowing in micro-fin tube, and the air-side has a wavy-fins. The optimal outer-fin number per unit length and the frontal velocity of condenser can be obtained by the calculated results using the developed computer code.

    中文摘要 ………………………………………………………..………..……Ⅰ 英文摘要 ………………………………………………………………....……Ⅱ 致謝 …………………………………………………………………..…..……Ⅲ 目錄 ……………………………………………………………………………Ⅳ 表目錄 …………………………………………………………………………Ⅵ 圖目錄 …………………………………………………………………....……Ⅵ 符號說明 ………………………………………………………………....……Ⅷ 第一章、緒論 …………………………………….………………..……..….....1 1.1研究動機 …………………………………….……………..…….......….1 1.2文獻回顧 …………………………………….……………..…..…..……3 1.3本文架構 …………………………………….………………..……..….10 第二章、非共沸冷媒冷凍熱力循環 ……….…………………………..…….11 2-1卡諾冷凍循環與純質冷媒蒸氣壓縮冷凍循環 …………………....…..13 2-2勞倫茲冷凍循環與非共沸冷媒蒸氣壓縮冷凍循環 ………..……..….15 第三章、非共沸冷媒冷凝器設計法與分析程序 ..……..…………...….……21 3.1 氣冷式冷凝器設計方法與分析架構 ………….……………....………22 3.2 空氣側之熱傳與壓降分析 ………….………….……………...…..…..27 3.2.1熱傳分析 ………………..………….……………………..…….…27 3.2.2壓降分析 …………..…….………………………………….…..…31 3.2.3空氣側熱傳及壓降係數關係式 ………………………………..…35 3.3 冷媒側之熱傳與壓降分析 ………….………….……………..…..…..41 3.3.1冷媒側熱傳係數關係式 ………….……………..….…….…….…41 3.3.2 冷媒側摩擦係數關係式 …………..………………….….…….…44 3.4鰭管式冷凝器分析數值程式設計 …………….…………………..…..50 3.4.1分段 -NTU法數值計算法則 ..………….………………….……52 3.4.2數值計算程序 ………….…………….……………………...……54 3.4.3流體性質函數庫的建立與應用 ………….…………….…………59 第四章、程式應用與討論 ….…………..……………………………………60 4.1程式驗證 ..………………………………….………………….……60 4.2設計模擬應用與討論 …….…………….……………………..……68 第五章、結論與建議 ………………………..…………………………..……78 5.1結論 ..……………………………………….………………….……78 5.2建議 …….…………….………………………………………..……79 參考文獻 …………………………………………………..…………….……80 自述 …..………………………………………………………………….……84

    [1] A. Johansson, P. Lundqvist ,”A method to estimate the circulated composition in refrigeration and heat pump system using zeotropic refrigerant mixtures”, International Journal of Refrigeration Vol.24 (2001), PP.798-808
    [2] ASHRAE, “ Ch. 3 Heat Transfer, Ch. 4 Two-phase flow, Ch.19 Refrigerants, Handbook of ASHRAE, Fundamental” 2001
    [3] A. Stegou-Sagia, M. Damanak , ”Binary and ternary blends of R-134a as alternative refrigerants to R-22”, Energy Conversion & Management, Vol. 41 (2000), PP.1345-1359
    [4] A.M. Jacobi, Y. Park, D. Tafti, X. Zhang, “An assessment of the state of the art, and potential design improvement for flat-tube heat exchangers in air conditioning and refrigeration applications – PhaseⅠ”, Air-conditioning and Refrigeration Technology Institute, 9/2001
    [5] C.A. Lommers, F. Airah, “Air conditioning and refrigeration industry refrigerant selection guide” , AIRAH National Refrigerant/CFC Sub-Committee, 6/1998
    [6] Cavallini, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, ”Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes”, International Journal of Refrigeration, Vol. 23 (2000), PP.4-25
    [7] Cavallini, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, C. Zilio ”Condensation inside and outside smooth and enhanced tubes – a review of recent research”, International Journal of Refrigeration, Vol. 26 (2003), PP.373-392
    [8] Chang, Y.J., Hsu, K.C., Lin, Y.T., and Wang, C.C. 2000. “A generalized friction correlation for louver fin geometry.” International Journal of Heat and Mass Transfer, Vol. 43, PP. 2237-2243.
    [9] Chemical Section, ”Refrigerant Blends: Composition Changes During Refrigerant Transfer and Equipment Charging” Air-conditioning & Refrigeration Institute.(ARI), 2/2000
    [10] Chi-Chuan Wang, Young-Ming Hwang, Yur-Tsai Lin, ”Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers”, International Journal of Refrigeration, Vol. 25 (2002), PP.673-680
    [11] Chisolm, D.,” Two-Phase flow in Pipelines and Heat Exchangers”, Longman Inc., New York, 1983.
    [12] Chwalowski M, Didion DA, Domanski PA., ”Verification of evaporator computer models and analysis of performance of an evaporator coil” ASHRAE Trans 1989, 23(1), 1229-36
    [13] Ebisu T, Torikoshi K. ,” Experimental study on evaporation and condensation heat transfer enhancement for R-407C using herringbone heat transfer tube”, ASHRAE Trans 1998; 104(2)
    [14] Heun, M.K., Crawford, R.R., “Longitudinal Fin Conduction in Multipass Cross-Counterflow Finned-Tube Heat Exchangers”, ASHRAE Transactions, Vol. 100, Part 1, PP.382-389, 1994.
    [15] JAMES M. CALM, Great Falls, Va., GLENN C. HOURAHAN, “Physical, Safety, and Environmental Data FOR Refrigerants”, Heating/Piping/AirConditioning, 8/1999, PP.27-33
    [16] J.H. Lee, S.W. Bae, K.H. Bang, M.H. Kim, ”Experimental and numberical research on condenser performance for R-22 and R-407C refrigerants”, International Journal of Refrigeration, Vol. 25 (2002), PP.372-382
    [17] Jim Parsnow, “Refrigerant Handbook 4th edition”, Carrier Corporation.,12/1998
    [18] John T. McMullan ,”Refrigeration and the environment – issues and strategies for the future”,International Journal of Refrigeration, Vol. 25 (2002), PP.89-99
    [19] J. Y. Choi, M. A. Kedzierski, P. A. Domanski, “Generalized pressure drop correlation for evaporation and condensation in smooth and micro-fin tubes”, IIF - IIR - Commission B 1 - Paderborn, Gemany, 5/2001
    [20] Kim, N.H., Yun, J.H., and Webb, R.L., “Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers”, Journal of Heat Transfer 119, 1997, PP.560-567.
    [21] Masayuki Nonaka, Hiroaki Matsushima, Kazuhiro Endoh, Kazuya Matsuo, Kazuo Fujibayashi, “Performance Evaluation of Heat Exchanger Using Alternative Refrigerant R407C”, Trans JSME Ser B 65, 1999, PP.307–314.
    [22] Mark O. McLinden, Sanford A. Klein, Eric W. Lemmon, Adele P. Peskin , ”NIST Database 23: NIST Refprop 7.0”, NIST, U.S.A Department of Commerce,7/2002
    [23] M. B. Ould Didi, N. Kattan, J.R. Thome, ”Prediction of two-phase pressure gradients of refrigerants in horizontal tubes”, International Journal of Refrigeration, Vol. 25 (2002), PP.935-947
    [24] McQuay Co., Ltd. ,”Application Guide(AG 31-007) – Refrigerants”, McQuay International, 2002
    [25] McQuiston, F. C. and Parker, J. P., ” Heating Ventilating and Air-Conditioning Analysis and Design”, John Wiley & Sons, New York, 2000.
    [26] Monifa Fela Wright, “Plate-fin-and-tube condenser performance and design for refrigerant R-410A air-conditioner (Thesis for Master Degree)”, Georgia Institute of Technology.,5/2000
    [27] Product Bulletin of Solvay Fluor Und Derivate GmbH
    (1)”Experimental Study on Fractionation of R-407C and Recharge Operation”, 07/1998
    (2)”Replacement of R22 and Future Trends in Refrigeration and Air Conditioning”, 9/2000
    (3)”Practical Application with Solkane® 407C”, 09/1999
    [28] Reinhard Radermacher, Yunho Hwang, “ Vapor Compression Heat Pumps with Refrigerant Mixtures” , Center for Environment Energy Engineering, Department of Mech. Engineering, University of Maryland, 2000
    [29] Satish G. Kandlikar, Masahiro Shoji and Vijay K. Dhir, “Handbook of Phase Change”, Taylor & Francis, 1999
    [30] Sadik Kakac, Hongtan Liu, Heat Exchanger Selection, Rating and Thermal Design”, CRC Press LLC, 1998.
    [31] S. Devotta, A.V. Waghmare, N.N. Sawant, B.M. Domkundwar , “Alternatives to HCFC-22 for air conditioners”, Applied Thermal Engineering 21 (2001), P.P.703-715
    [32] Steve J. Eckels, Brian A. Tesene, “A Comparsion of R-22, R-134a, R-410A and R-407C Condensation Performance in Smooth and Enhanced Tubes: PartⅠ, Heat Transfer”, ASHRAE Transactions CD, SE-99-4-3., 1999
    [33] Steve J. Eckels, Brian A. Tesene, “A Comparsion of R-22, R-134a, R-410A and R-407C Condensation Performance in Smooth and Enhanced Tubes: Part Ⅱ, Pressure Drop”, ASHRAE Transactions CD, SE-99-4-4., 1999
    [34] Susan W. Stewart, “Enhanced Finned-Tube Condenser Design and Optimization”, Thesis for Ph.D., Georgia Institute of Technology.,5/2002
    [35] T.A. Newell, R.K. Shah, “An Assessment of Refrigerant Heat Transfer, Pressure Drop, and Void Fraction Effects In Micro-fin Tubes” ASHRAE Transactions CD, V. 107, Pt. 2., 2001
    [36] Wang, C.C., Lee, W.S., and Sheu, W.J., “A comparative study of compact enhanced fin-and-tube heat exchangers.” Int. J. of Heat and Mass Transfer, Vol. 44, pp. 3565-3573, 2001a.
    [37] Wang, C.C., Y. M. Hwang, Y.T. Lin, “Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers” International Journal of Refrigeration, 25(2002), pp. 673-680.
    [38] Wang, C.C., “Recent progress on the air-side performance of fin-and tube heat exchangers.” Int. J. of Heat Exchangers, Vol. 1, pp. 49-76, 2000
    [39] Wang, C.C. and Chi, K.Y., “Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data”. Int. J. of Heat and Mass Transfer, Vol. 43, pp. 2681-2691, 2000.
    [40] Wang, C.C., Lee, C.J., Chang, C.T, and Chang, Y.-J. “Some aspects of plate fin-and tube heat exchangers: with and without louvers.” Enhanced Heat Transfer, Vol. 6, pp. 357-368., 1999c.
    [41] Wang, C.C., Tsai, Y.M., and Lu, D.C., “Comprehensive study of convex-louver and wavy finned-tube heat exchangers.” J. of Thermophysics and Heat Transfer, Vol. 12, No.3, July-September 1998, pp. 423-430, 1998.
    [42] Wang, C.C., Chang, Y.J., Hsieh, Y.C., and Lin, Y.T., “Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins.” Int. J. of Refrigeration, Vol. 19, No. 4, pp.223-230, 1996.
    [43] William M. Kays, A.L. London, “ Compact Heat Exchanger” , McGraw-Hill Book Company 3 Rd., 1984
    [44] Webb, R.L., “Principles of Enhanced Heat Transfer” , John Wiley & Sons, New York, 1994
    [45] W. Vance Payne and Piotr A. Domanski, “Potential benefits of smart refrigerant distributors” Final Report of NIST, USA, 9/2002

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE