| 研究生: |
蕭敬霖 Hsiao, Ching-Lin |
|---|---|
| 論文名稱: |
先進封裝技術之晶圓重組製程中晶粒偏移分析與改善對策 Die-shift failure analysis and alleviation strategy for wafer reconstitution process of advanced packaging technology |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 共同指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 晶圓重組 、晶粒偏移 、模流因素 、固力因素 、固化收縮 |
| 外文關鍵詞: | reconstitution process, die shift, curing shrinkage |
| 相關次數: | 點閱:165 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶圓重組 (wafer reconstitution) 必須經歷一系列壓模、後熟化、卸除載盤等製程,其中壓模速度、壓力、溫度以及時間等參數設定,對製程良率維持而言是極為關鍵的因素。若未能妥善地設定這些參數,將可能造成重組後晶圓在外觀上明顯可見的缺陷,如晶圓翹曲 (wafer warpage) 以及晶粒偏移 (die shift) 等直接降低製程良率的現象。所謂晶粒偏移是由製程中的模流因素負載和各材料間熱膨脹係數 (coefficient of thermal expansion;CTE) 差異所致之熱應力,與封膠固化收縮時所產生之殘留應力,以及長時間處於高溫時封膠所產生之黏彈效應等固力因素交互作用所致,而本論文主要評估這些模流因素與固力因素對製程所造成的缺陷。論文中我們利用自行研發的演算法,求得封膠 (Epoxy molding compound ; EMC) 的材料參數和固化程度,轉換成製程時封膠的黏度;並將黏度做為分析模型的材料參數,透過三維CFD模型中,評估出模流因素造成的晶粒偏移。固力因素的分析,主要利用固化收縮與熱膨脹關係,去計算每段製程的晶圓半徑大小,進而估算出一個晶粒偏移的等效伸縮率。在經過晶粒偏移的模擬與實驗驗證後,模型的準確率高達90%以上,最後我們試著提出對於晶粒偏移之改善方案,以降低前述各項缺陷在產線上實際發生之機率,進而達成改善製程良率之終極目標。
SUMMARY
In advanced packaging technologies, there are many important parameters in the wafer reconstitution process, such as molding velocity, pressure, temperature and duration of each process. Without proper tuning of these parameters, some serious defects typically appear after wafer reconstitution, such as die shift and wafer warpage. These defects clearly may decrease the yield. In this thesis, we utilize 3D CFD simulation and curing shrinkage analysis to determine both the fluid and solid effects on die-shift defects. Then it turns out that die shift mainly is caused by the interaction of fluid force loading, material thermal expansion, shrinkage of molding compound and viscoelastic effects. Following previous research, we use experimentally determined values for material parameters in our simulations. In the meantime, we also estimate the extent of curing of molding compound by analyzing experimental data of viscosity tests. After finishing those experiments, we then input these material parameters into our 3D CFD model to simulate the real molding process. Calculating the shear force loading on tape, we can predict die shift made by the fluid effect. It is much smaller than the actual die shift measured in the factory. On the other hand, we use thermal and shrinkage formulation to estimate die shift caused by solid effect. Comparing actual and prediction of die shift, finally, we find out that the curing shrinkage and coefficient of thermal expansion are key factors of the die shift defect. To sum up, this thesis predicts the amount of die shift accurately, comparing the measurement in production lines. With this successful prediction, we can give displacement compensation to dies before the reconstitution process. After wafer reconstitution process, dies will locate at the desired target position.
[1] C. Y. Yang, Y. C. Liu, K. S. Chen, T.-S. Yang, “Thermo-mechanical and mold flow analysis of die shift in wafer reconstitution process for advanced packaging technology”, International Conference on Industrial Application Engineering (ICIAE), pp. 1-6, 2017.
[2] Y. C. Wang, S. H. Lee, “ASE meeting materials”, ASE Manufacturing Facilities, confidential command cautions, 2016.
[3] C. H. Khong, “A Novel Method to Predict Die Shift During Compression Molding in Embedded Wafer Level Package”, Electronic Components and Technology Conference, pp. 535-541, 2009.
[4] B. Lin, S. Ho, S. D. Velez, T. Chai, X. Zhang, “Investigation on Die Shift Issues in the 12-in Wafer-Level Compression Molding Process”, IEEE transactions on components, packaging and manufacturing technology, vol. 3, no. 10, pp. 1647-1653, 2013.
[5] H. S. Ling, B. Lin, Ch. S. Choong, Ch. T. Chong, “Comprehensive Study on the Interactions of Multiple Die Shift Mechanisms During Wafer Level Molding of Multichip-Embedded Wafer Level Packages”, IEEE transactions on components, packaging and manufacturing technology, vol. 4, no. 6, pp. 1090-1098, 2014.
[6] J. Mazuir, V. Olmeta, M. Yin, G. Pares, A. Planchais, K. Inal, M. Saadaoui, “Evaluation and Optimization of Die-Shift in Embedded Wafer-Level Packaging by Enhancing the Adhesion Strength of Silicon Chips to Carrier Wafer”, 13th Electronics Packaging Technology Conference, France, pp. 747-751, 2011.
[7] D. V. Sorono, J. Lin, C. T. Chong, S. C. Chong, S. R. Vempati, “Study on Mold Flow During Compression Molding for Embedded Wafer Level Package (EMWLP) with Multiple Chips”, IEEE 14th Electronics Packaging Technology Conference, pp. 336-341, 2012.
[8] G. Sharma, A. Kumar, V. S. Rao, S. W. Ho, V. Kripesh, “Solutions Strategies for Die Shift Problem in Wafer Level Compression Molding”, IEEE transactions on components, packaging and manufacturing technology, vol. 1, no. 4, pp. 502-509, 2011.
[9] A. Kumar, X. Dingwei, V. N. Sekhar, S. Lim, C. Keng, G. Sharma, V. S. Rao, V. Kripesh, John H. Lau, D.-L. Kwong, “Wafer Level Embedding Technology for 3D Wafer Level Embedded Package”, Electronic Components and Technology Conference, pp. 1289-1296, 2009.
[10] M. R. Kamal, M. E. Ryan, “Kinetics and Thermal Characterization of Thermoset cure”, Polymer Engineering and Science, vol. 13, no 1, pp. 59-63, 1973.
[11] M. R. Kamal, “Thermoset Characterization for Moldability Analysis”, Polymer Engineering and Science, vol. 14, no. 13, pp. 231-238, 1974.
[12] M. R. Kamal, M. E. Ryan, “The Behavior of Thermosetting Compounds in Injection Molding Cavities”, Polymer Engineering and Science, vol. 20, no. 13, pp. 859-867, 1980.
[13] S. D. Lipshitz, C. H. Macosko, “Rheological changes during a Urethane network polymerization”, vol. 16, no.12, pp. 803-809, 1976.
[14] R. R. Hill, Jr. Shailesh, V. Muzumdar, L. J. Lee, “Analysis of Volumetric Changes of Unsaturated Polyester Resins During Curing”, Polymer Engineering and Science, vol. 35, no. 10, pp. 852-859, 1995.
[15] M. Sadeghinia, K.M.B. Jansen, “Characterization and modeling the thermo-mechanical cure-dependent properties of epoxy molding compound”, International Journal of Adhesion & Adhesives, pp. 82-88, 2012.
[16] J. D. Vreugd, K.M.B. Jansen, “Effects of Molding Compound Cure on Warpage of Electronic Packages”, 10t Electronics Packaging Technology Conference, pp. 1-8, 2008.
[17] Y. Simo, J. Park, H.-J. Lee, “Compensation Method for Die Shift Caused by Flow Drag Force in Wafer-Level Molding Process”, Institute of Micromachines, vol. 7, no.95, pp. 1-12, 2016.
[18] Y. Han, M.-Z. Ding, B. Lin, “Comprehensive Investigation of Die Shift in Compression Molding Process for 12 Inch Fan-Out Wafer Level Packaging”, Institute of Microelectronics, IEEE 66th Electronic Components and Technology Conference (ECTC), pp. 1605-1610, 2016.
[19] C. Ghnatios, F. Chinesta, C. Binetruy, “3D Modeling of Squeeze Flows Occurring in Composite Laminates”, International Journal of Material Forming, vol. 8, no. 1, pp. 73-83, 2015.
[20] R. C. Hibbeler, “Mechanics of Materials”, 8 edition, pp.808-809, 2010.
[21] C.-Y. Yang, Y.-C. Liu, K.-S. Chen*, T.-S. Yang, “Process Emulation for Predicting Die Shift and Wafer Warpage in Wafer Reconstitution”, International Conference on Electronic Packaging Technology (ICEPT), pp.1-6, 2017.
[22] Smith, Hashemi, “材料科學概論”,第五版,東華書局,2013年。
[23] 許瑞峰,微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用,國立成功大學機械系碩士論文,民國92年。
[24] 葉恩妤,重置式晶圓翹曲模擬,國立成功大學機械系碩士論文,民國105年。