| 研究生: |
莊鑫堅 Chuang, Hsin-Chien |
|---|---|
| 論文名稱: |
固雜料經碳熱還原反應生成直接還原鐵之壓碎強度研究 Study of Crushing Strength of Direct Reduced Iron from Carbothermic Reaction of Residual Materials |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 固雜料 、旋轉床爐 、碳熱還原 、直接還原鐵 、鹽基度 、軟熔溫度 、壓碎強度 |
| 外文關鍵詞: | residual materials, rotary hearth furnace, carbothermic reduction, direct reduced iron, basicity, softening and melting temperature, crushing strength |
| 相關次數: | 點閱:166 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一貫作業鋼鐵冶煉製程中會產生一些集塵灰及礦泥,統稱為固雜料。固雜料內含有高比例之鐵氧化物與碳,可經由碳熱還原反應生成直接還原鐵(DRI, Direct Reduced Iron),作為高爐原料來回收。為了避免儲存、搬運和高爐加料過程中產生碎裂,而影響高爐透氣性,故DRI壓碎強度須足夠(大於0.60 kg/mm2)。
本研究針對固雜料渣組成對軟熔性質之影響進行評估。藉由實驗結果與相圖之曲線走向,以了解並建立渣相軟熔性資料庫,作為調整之參考。鹽基度(B2)和FeO都會影響渣之軟熔溫度,固雜料渣相之B2需要低於1.43以下,變形溫度才能低於1250℃,DRI內部才有熔渣固結現象,DRI強度也會跟著提高。接下來探討添加劑(Fe2O3、SiO2、石墨)與還原溫度對固雜料經由碳熱還原反應生成直接還原鐵(DRI)壓碎強度之影響。當固雜料配比不適當或還原溫度降低時所生成DRI的壓碎強度會低於規格要求的0.60 kg/mm2,藉由適當添加劑的加入,可以確保DRI強度合乎高爐進料要求。
本研究配置兩組不同組成配比的固雜料。第ㄧ種固雜料(樣品A)的主要組成是28.82%含油脫水礦泥(Oily DW Sludge)、19.15%高爐礦泥(BF Sludge)、17.05%轉爐礦泥(BOF Slurry)、13.55%含油銹皮(Oily Mill Scale)。固雜料(樣品A)用於小規模(Laboratory Scale)試驗,分別添加10、15、20% Fe2O3,5、10、15% SiO2與2、4、6%石墨,均勻混拌後壓錠成Pellet,經不同反應溫度(1150~1250℃),探討添加劑與反應溫度對DRI壓碎強度之影響。研究發現樣品A在1250℃,15分鐘進行碳熱還原後,所得DRI壓碎強度為1.66 kg/mm2。添加10與15% Fe2O3,可提高其DRI壓碎強度,但是添加20% Fe2O3,DRI壓碎強度反而會減弱。添加5% SiO2,DRI壓碎強度增加,添加10與15% SiO2,DRI壓碎強度變差。添加2、4、6%石墨,DRI壓碎強度明顯減弱。反應溫度降低,DRI壓碎強度會變差。當反應溫度降為1200℃時,添加15% Fe2O3,DRI壓碎強度仍高於0.60 kg/mm2。
中鋼RHF (Rotary Hearth Furnace)製程,係將調漿,脫水後,經混練擠型成小圓柱狀顆粒再進爐反應,經由實驗發現其成型最佳水份介於17~21區間。另外,針對樣品A以950℃,5分鐘下測試其驟熱爆裂阻抗發現,避免驟熱爆裂之最佳水分區間為15~19%。综合考量擠型性能和驟熱爆裂阻抗,當固雜料進行模擬製程試驗時,其進料最適水分區間為17~19%。另ㄧ種固雜料樣品B與樣品A有類似的組成,唯轉爐礦泥減為10.10%、而高爐煙塵(BF Flue Dust)從原來的2.66%增為9.20%,此組成預期會使DRI的強度變差。樣品B藉由先導型規模(Pilot Scale)試驗,控制水分於18%,擠出成型的樣品,於1200℃,15分鐘反應後,其DRI壓碎強度為0.48 kg/mm2。再分別添加2、4、6、8%廢氧化鐵粉,於1200℃,15分鐘反應後進行壓碎強度試驗,結果發現添加6與8%廢氧化鐵粉,DRI壓碎強度可提高至0.61、0.71 kg/mm2。
根據碳熱反應原理和DRI壓碎強度形成機構,固雜料化學組成中(C/Ored)mol是影響DRI壓碎強度之主要因素。固雜料適度添加Fe2O3,使(C/Ored)mol小於1.20,可以確保DRI壓碎強度在0.60 kg/mm2以上。
In integrated steel plants, dusts and sludges, commonly referred to as “residual materials”, are inevitably generated during steel production. Due to high iron oxides and carbon contents, these residual materials can be converted into direct reduced iron (DRI) through the carbothermic reduction. DRI can be recycled as the feedstock of blast furnace for liquid iron production. It is known that the permeability of blast furnace would be deteriorated in case of the severe breakage of burden materials. Therefore, it is strictly required that the crushing strength of DRI has to be higher than 0.60 kg/mm2 to avoid its breakage during storage, transportation, and charging into blast furnace.
The study focuses on the effect of the softening and melting temperature of slag composition based on residual materials in China Steel Company. The results compared with data of phase diagram can estimate how to adjust recipe of residual materials in order to meet the feed demand of blast furnace. The results show both basicity (B2) and FeO content can affect the softening and melting temperature of slag. When B2 is lower than 1.13, the deformation temperature is probably less than 1250℃. The solidified softened slag could intensify DRI crushing strength. At next stage, the study investigates the effect of additives to residual materials on the crushing strength of DRI. By adding proper agents, it can assure DRI crushing strength to meet the feed demand of blast furnace. The mixture (Case A) which was made of nine kinds of residual materials was composed of 28.82% oily dewater sludge, 19.15% blast furnace sludge, 17.05% basic oxygen furnace slurry, and 13.55% oily mill scale. The rest of the residual materials were basic oxygen furnace dust, blast furnace flue dust, wastes incinerator fly-ash, blast furnace high-zinc sludge, and cold-rolling sludge. Additives included powdery reagents of Fe2O3, SiO2, and graphite. Experimental conditions of the lab-scale carbothermic reaction included reaction time ranging from 10 to 20 minutes and reaction temperature between 1150 and 1250℃. Results shows adding proper amount of Fe2O3 will decrease the value of (C/Ored)mol and increase the iron content of DRI. It would raise the crushing strength of DRI. It also was found that adding a little SiO2 would induce the partially softening and melting slag phase under 1250℃ due to the lower B2 value (down to 0.89) of the residual materials specimens. The higher crushing strength of DRI was obtained due to sintering. Furthermore, the addition of graphite resulted in the value of (C/Ored)mol above 1.20. It declined the DRI strength. On the other hand, increasing reduction time or reaction temperature could enlarge effect of additives on the crushing strength of DRI. When reaction temperature decreased to 1200℃, adding 15% Fe2O3 made crushing strength of DRI higher than 0.60 kg/mm2.
In in-situ process of RHF, the intact green pellet of residual materials is essential. Blending water content with residual materials affects discharge.of extruder. The appropriate water content was between 17~21%. Besides, the condition of heat fragment was conducted at 950℃ for 5 minutes. The optimal water content was 15~19% for resistance of heat fragment. Synthesizing both results, 17~19% water content is the best condition for pilot scale. The mixture (Case B) had similar composition to Case A, but BOF slurry decreased from 17.05 to 10.10% and BF flue dust increased from 2.66 to 9.20%. This recipe expected to produce worse strength of DRI due to excess carbon content. The pellets via an extruder with water content (18%) were reduced at 1200℃ for 15 minutes. The result shows the crushing strength for Case B was 0.48 kg/mm2. Adding 2, 4, 6, 8% Fe2O3 from acid regenerate plant (ARP) to Case B was reduced at 1200℃ for 15 minutes. It shows 6 and 8% Fe2O3 can increase crushing strength of DRI to 0.61 and 0.71 kg/mm2.
According above results shows that high value (>1.20) of (C/Ored)mol in residual materials would cause the crushing strength of DRI under 0.60 kg/mm2. So adding appropriate Fe2O3 which consumes carbon and introduces softened slag within DRI assures the crushing strength of DRI above 0.60 kg/mm2.
1. 劉世賢,“鋼廠固雜料碳熱還原特性及製程介紹”,工程,Vol. 80, No. 3, pp. 109-120, (2007).
2. Koros P. J., “Dusts, Scale, Slags, Sludges. . . Not Wastes, But Sources of Profits,” Metallurgical and Materials Transactions B, Vol. 34, No. 6, pp. 769-779, (2003).
3. Donald J. R. and Pickles C. A., “Reduction of Electric Arc Furnace Dust with Solid Iron Powder,” Canadian Metallurgical Quarterly, Vol. 35, No. 3, pp. 255-267, (1996).
4. Das B., Prakash S., Reddy P. S. R., and Misra V. N., “An Overview of Utilization of Slag and Sludge from Steel Industries,” Resources, Conservation and Recycling, Vol. 50, pp. 40-57, (2007).
5. 張文樸,“我國含鐵冶金煙塵綜合利用的研發進展”,資源再生,No. 12, pp. 22-24, (2007).
6. 彭開玉、周云、王世俊、李遼沙、王海川、董元篪,“鋼鐵廠高鋅含鐵塵泥二次利用的發展趨勢”,安徽工業大學學報,Vol. 23, No. 2, pp. 127-131, (2006).
7. 喻輔成、徐冬華、陳惠蘭、黎金芳、王敏霞,“南(昌)鋼公司含鐵粉塵綜合利用的設想”,冶金經濟與管理,No. 1, pp. 19-21, (2009).
8. 莊劍鳴、宋招權、姚銳、劉國慶,“鋼鐵廠高碳高鋅含鐵粉塵脫鋅動力學研究”,礦冶工程,Vol. 18, suppl. 1, pp. 225-229, (1998).
9. 石磊、陳榮歡、王如意,“鋼鐵工業含鐵塵泥的資源化利用現狀與發展方向”,中國資源綜合利用,Vol. 26, No. 2, pp. 12-15, (2008).
10. Pickles C. A., “Thermodynamic Analysis of the Selective Carbothermic Reduction of Electric Arc Furnace Dust,” Journal of Hazardous Materails, Vol. 150, pp. 265-278, (2008).
11. Oda H., Ibaraki T., and Abe Y., “Dust Recycling System by the Rotary Hearth Furnace,” Nippon Steel Technical Report, No. 94, pp. 147-152, (2006).
12. 張漢泉、朱德慶,“直接還原的現狀與發展”,鋼鐵研究,Vol. 30, No. 2, pp. 51-54, (2002).
13. 胡俊鴿、吳美慶、毛豔麗,“直接還原煉鐵技術的最新發展”,鋼鐵研究,Vol. 34, No. 2, pp. 53-57, (2006).
14. 黃雄源、周興靈,“現代非高爐煉鐵技術的發展現狀與前景(一)”,金屬材料與冶金工程,Vol. 35, No. 6, pp. 49-56, (2007).
15. Sawa Y., Yamamoto T., Takeda K., and Itaya H., “New coal-based process to produce high quality DRI for the EAF,” ISIJ International, Vol. 41, Suppl., pp. S17-S21, (2001).
16. 全紅,“直接還原煉鐵工藝技術综述”,雲南冶金,Vol. 36, No. 2, pp. 57-61, (2007).
17. Ibaraki T. and Oda H., “Dust Recycling Technology by the Rotary Hearth Furnace at Nippon Steel’s Kimitsu Works,” Revue de Métallurgie, Vol. 99, No. 10, pp. 809-818, (2002).
18. Birat J. P., “Recycling and By-products in the Steel Industry,” Revue de Métallurgie, Vol. 100, No. 4, pp. 339-348, (2003).
19. Nagahiro K., Okazaki T., and Nishino M., “Activities and Technologies for Environmental Protection at Nippon Steel: a Perspective,” Ironmaking and Steelmaking, Vol. 32, No. 3, pp. 227-234, (2005).
20. Anameric B. and Kawatra S. K., “Properties and Features of Direct Reduced Iron,” Mineral Processing & Extractive Metal. Rev., Vol. 28, pp. 59-116, (2007).
21. 劉世賢,“一貫鋼廠固雜料碳熱還原反應性探討”,技術與訓練,Vol. 31, No. 2, pp. 56-65, (2006).
22. Dahl F., Brandberg J., and Sichen D., “Characterization of Melting of Some Slags in the Al2O3-CaO-MgO-SiO2 Quaternary System,” ISIJ International, Vol. 46, No. 4, pp. 614-616 (2006).
23. Peng C., Zhang F., Li H., and Guo Z., “Removal of Zn, Pb, K and Na from Cold Bonded Briquettes of Metallurgical Dust in Simulated RHF,” ISIJ International, Vol. 49, No. 12, pp. 1874-1881, (2009).
24. 殷惠民,“用旋轉床爐法處理鋼鐵廠塵泥”,江蘇冶金,Vol. 36, No. 6, pp. 6-7, (2008).
25. 牛琳霞,“新日鐵清潔生產的發展”,武鋼技術,Vol. 45, No. 6, pp. 45-50, (2007).
26. Fruehan R. J., “New Steelmaking Processes: Drivers, Requirements and Potential Impact,” Ironmaking and Steelmaking, Vol. 32, No. 1, pp. 3-8, (2005).
27. Dash R. N. and Das C., “Recent Developments in Iron and Steel Making Industry,” Journal of Engineering Innovation and Research, Vol. 1, No. 1, pp. 23-33, (2009).
28. Steffen R. and Lüngen H.-B., “State of the Art technology of Direct and Smelting Reduction of Iron Ores,” Revue de Métallurgie, Vol. 101, No. 10, pp. 171-182, (2004).
29. Michishita H. and Tanaka H., “Prospects for Coal-based Direct Reduced Process,” Kobe Steel Engineering Reports, Vol. 60, No. 1, pp. 22-28, (2010).
30. Tsutsumi H., Yoshida S., and Tetsumoto M., “Features of FASTMET Process,” Kobe Steel Engineering Reports, Vol. 60, No. 1, pp. 36-42, (2010).
31. Tanaka H., Harada T., and Yoshida S., “Study of Energy Consumption and Environmental Load by Coal-based Direct Reduction Iron-making Processes,” Kobe Steel Engineering Reports, Vol. 56, No. 2, pp. 27-31, (2006).
32. 胡俊鴿、周文濤、趙小燕,“旋轉床爐煉鐵工藝發展現狀”,冶金叢刊,Vol. 183, No. 5, pp. 43-46, 50, (2009).
33. 織田博史,“新日鐵的旋轉床爐法粉塵回收系統”,鞍鋼技術,Vol. 346, No. 4, pp. 56-60, (2007).
34. Lu W.-K. and Huang D. F., “Mechanisms of reduction of iron ore/coal agglomerates and scientific issues in RHF operations,” Mineral Processing and Extractive Metallurgy Review, Vol. 24, No. 3-4, pp. 293-324, (2003).
35. Lu W.-K. and Huang D. F., “The Evolution of Ironmaking Process Based on Coal-Containing Iron Ore Agglomerates,” ISIJ International, Vol. 41, No. 8, pp. 807-812, (2001).
36. Oda H., Ibaraki T., and Takahashi M., “Dust Recycling Technology by the Rotary Hearth Furnace,” Nippon Steel Technical Report, No. 86, pp. 30-34, (2002).
37. Ichikawa H. and Morishige H., “Rotary Hearth Furnace Process for Steel Mill Waste Recycling and Direct Reduced Iron Making,” Revue de Métallurgie, Vol. 100, No. 4, pp. 349-354, (2003).
38. Ichikawa H. and Morishige H., “Effective Use of steelmaking Dust and Sludge by Use of Rotary Hearth Furnace,” Nippon Steel Technical Report, No. 86, pp. 35-38, (2002).
39. McClelland J. M. and Metius G. E., “Recycling Ferrous and Nonferrous Waste Streams with FASTMET,” JOM, Vol. 55, No. 8, pp. 30-34, (2003).
40. McClelland J. M., Tanaka H., Sugiyama T., Harada T., and Sugitatsu H., “FASTMET® Dust Pellet Reduction Operations Report on the First FASTMET Waste Recovery Plant,” pp. 1-12, (2000).
41. 劉彥麗,“淺談Fastmet煉鐵技術”,河北冶金,No. 5, pp. 3-4, 29, (2005).
42. Sohn I. and Fruehan R. J., “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part I. The Role and Kinetics of Volatile Reduction,” Metallurgical and Materials Transactions B, Vol. 36, No. 5, pp. 605-612, (2005).
43. Sohn I. and Fruehan R. J., “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part II. The Reduction of Iron Oxide/Carbon Composites,” Metallurgical and Materials Transactions B, Vol. 37, No. 2, pp. 223-229, (2006).
44. Sohn I. and Fruehan R. J., “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part III. The Simulation of Volatile Reduction in a Multi-Layer Rotary Hearth Furnace Process,” Metallurgical and Materials Transactions B, Vol. 37, No. 2, pp. 231-238, (2006).
45. Halder S. and Fruehan R. J., “Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, pp. 784-795, (2008).
46. Halder S. and Fruehan R. J., “Reduction of Iron-Oxide-Carbon Composites: Part II. Rates of Reduction of Composite Pellets in a Rotary Hearth Furnace Simulator,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, pp. 796-808, (2008).
47. Halder S. and Fruehan R. J., “Reduction of Iron-Oxide-Carbon Composites: Part III. Shrinkage of Composite Pellets during Reduction,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, pp. 809-817, (2008).
48. Harada T., Tsuge O., Kobayashi I., Tanaka H., and Uemura H., “The Development of New Iron Making Processes,” Kobelco Technology Review, No. 26, pp. 92-97, (2005).
49. 郭玉華、齊淵洪、王海風、周繼程,“發展我國旋轉床爐工藝需合理解決的關鍵技術”,煉鐵,Vol. 28, No. 4, pp 60-62, (2009).
50. Oda H., Ibaraki T., and Abe Y., “Dust Recycling System by the Rotary Hearth Furnace,” Nippon Steel Technical Report, No. 94, pp. 147-152, (2006).
51. Ishikawa H., Kopfle J., Mcclelland J., and Ripke J., “Rotary Hearth Furnace Technologies for Iron Ore and Recycling Applications,” Archives of Metallurgy and Materials, Vol. 53, No. 2, pp. 541-545, (2008).
52. Çamci L., Aydin S. and Arslan C., “Reduction of Iron Oxides in Solid Wastes Generated by Steelworks,” Turkish J. Eng. Env. Sci., Vol. 26, pp. 37-44, (2002).
53. 王定武,“旋轉床爐工藝生產直接還原鐵的現況和前景”,冶金管理,No. 12, pp. 53-55, (2007).
54. 楊雙平、馮燕波、曹維成、李武紅,“直接還原技術的發展及前景”,甘肅冶金,Vol. 28, No. 1, pp. 7-10, (2006).
55. 陰繼祥,“煤基直接還原技術的發展”,太原理工大學學報,Vol. 31, No. 3, pp. 314-315, 323, (2000).
56. Meyer K., Pelletizing of Iron Ores, Springer-Verlag, Berlin, pp. 292, (1980).
57. Gupta R. C. and Gautam J. P., “The Effect of Additives and Reductants on the Strength of Reduced Iron Ore Pellet,” ISIJ International, Vol. 43, No. 12, pp. 1913-1918, (2003).
58. Gupta R. C., Gautam J. P., and Mohan S., “Water Hyacinth Char Addition in Iron Ore Pellet: An Exploratory Study,” ISIJ International, Vol. 43, No. 2, pp. 259-261, (2003).
59. Takano C. and Mourao M. B., “Comparison of High Temperature Behavior of Self-Reducing Pellets Produced from Iron Ore with that of Dust from Sintering Plant,” ISIJ International, Vol. 41, Suppl., pp. S22-S26, (2001).
60. Takano C. and Mourao M. B., “Self-Reducing Pellets for Ironmaking: Mechanical Behavior,” Mineral Processing & Extractive Metall. Rev., Vol. 24: pp.233-252, (2003).
61. Sharma T., Gupta R. C., and Prakash B., “Effect of Firing Condition and Ingredients on the Swelling Behaviour of Iron Ore Pellets,” ISIJ International, Vol. 33, No. 4, pp. 446-453, (1993).
62. Nasr M. I., Omar A. A., Hessien M. M., and Ei-Geassy A. A., “Carbon Monoxide Reduction and Accompanying Swelling of Iron Oxide Compacts,” ISIJ International, Vol. 36, No. 2, pp. 164-171, (1996).
63. Nakano M., Naito M., Higuchi K., and Morimoto K., “Non-spherical Carbon Composite Agglomerates: Lab-scale Manufacture and Quality Assessment,” ISIJ International, Vol. 44, No. 12, pp. 2079–2085 (2004).
64. Chowdhury G. M., Roy G. G., and Roy S.K., “Reduction Kinetics of Iron Ore-Graphite Composite Pellets in a Packed-Bed Reactor under Inert and Reactive Atmospheres,” Metallurgical and Materials Transactions B, Vol. 39, No. 2, pp. 160-178, (2008).
65. Mantovani M. C., Takano C., and Buchler P.M., “Electric arc furnace dust–coal composite pellet: effects of pellet size, dust composition, and additives on swelling and zinc removal,” Ironmaking and Steelmaking, Vol. 29, No. 4, pp. 257-265, (2002).
66. Boccaccini A. R. and Hamann B., “Review in Situ High-temperature Optical Microscopy,” Journal of Materials Science, Vol. 34, pp. 5419-5436, (1999).
67. Osborn E. F., DeVries R. C., Gee K. H., and Kraner H. M., “Al2O3-CaO-MgO-SiO2,” Slag Atlas, ed. Verein Deutscher Eisenhüttenleute, Verlag Stahleisen GmbH, Düsseldorf, pp. 157, (1995).
68. Osborn, E. F. and Muan A., “CaO-FeOn-SiO2,” Slag Atlas, ed. Verein Deutscher Eisenhüttenleute, Verlag Stahleisen GmbH, Düsseldorf, pp. 126, (1995).
69. Osborn, E. F. and Muan A., “CaO-Fe2O3-SiO2,” Slag Atlas, ed. Verein Deutscher Eisenhüttenleute, Verlag Stahleisen GmbH, Düsseldorf, pp. 70, (1981).
70. Fruehan R. J., “Rate of Reduction of Iron-Oxides by Carbon,” Metallurgical and Materials Transactions B, Vol. 8, No. 2, pp. 279-286, (1977).
71. Osborn E. F., DeVries R. C., Gee K. H., and Kraner H. M., “Al2O3-CaO-MgO-SiO2,” Slag Atlas, ed. Verein Deutscher Eisenhüttenleute, Verlag Stahleisen GmbH, Düsseldorf, pp. 84, (1981).
72. 張殿偉、郭培民、趙沛,“現代煉鐵技術發展”,鋼鐵钒鈦,Vol. 27, No. 2, pp. 26-32, 47, (2006).
73. 楊福軍、馬永磊、王慶順,“以冶金廢料為主要原料生產低品質金屬化球團的探索”,河北冶金, Vol. 135, No. 3, pp.11-13, (2003).
74. 許幫華、范楊,“馬鋼含鐵固體廢棄物資源化的可行性研究”,安徽冶金科技職業學院學報,Vol. 16, No. 4, pp. 22-24, (2006).
75. 宋海琛、彭兵,“不銹鋼粉塵綜合利用現狀及研究進展”,礦產綜合利用,No. 3, pp. 18-22, (2004).
76. Fortini O. M. and Fruehan R. J., “Rate of Reduction of Ore-Carbon Composites: Part I: Determination of Intrinsic Rate Constants,” Metallurgical and Materials Transactions B, Vol. 36, No. 6, pp. 865-872, (2005).
77. Fortini O. M. and Fruehan R. J., “Rate of Reduction of Ore-Carbon Composites: Part II: Modeling of Reduction in Extended Composites,” Metallurgical and Materials Transactions B, Vol. 36, No. 6, pp. 709-717, (2005).
78. 馮燕波、曹維成、楊雙平、宋永輝,“中國直接還原技術的發展現狀及展望”,中國冶金,Vol. 16, No. 5, pp. 10-13, (2006).
79. 杜俊峰、袁守謙,“積極發展直接還原鐵(DRI)生產技術,應對21世紀電爐廢鋼緊缺的挑戰”,工業加熱,No. 2, pp. 1-4, (2002).
80. Kobayashi I., Tanigaki Y., and Uragami A., “A New Process to Produce Iron Directly from Fine Ore and Coal,” Iron and Steelmaker, Vol. 28, No. 9, pp. 19-22, (2001).
81. Nolasco-Sobrinho P. J., Espinosa D. C. R., and Tenório J. A. S., “Characterisation of Dusts and Sludges Generated during Stainless Steel Production in Brazilian Industries,” Ironmaking and Steelmaking, Vol. 30, No. 1, pp. 11-17, (2003).
82. Park J. W., Ahn J. C., Song H., Park K., Shin H., and Ahn J. S., “Reduction Characteristics of Oily Hot Rolling Mill Sludge by Direct Reduced Iron Method,” Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 129-140, (2002).
83. Makkonen H. T., Heino J., Laitila L., Hiltunen A., Poylio E., and Harkki J., “Optimisation of Steel Plant Recycling in Finland: Dusts, Scales and Sludge,” Resources, Conservation and Recycling, Vol. 35, No. 1-2, pp. 77-84, (2002).
84. Aota J., Morin L., Zhuang Q., and Clements B., “Direct Reduced Iron Production Using Cold Bonded Carbon Bearing Pellets Part 1 - Laboratory Metallization,” Ironmaking and Steelmaking, Vol. 33, No. 5, pp. 426-428, (2006).
85. Chen H. K., “Kinetic Study on the Carbothermic Reduction of Zinc Oxide,” Scandinavian Journal of Metallurgy, Vol. 30, No. 5, pp. 292-296, (2001).
校內:2020-12-31公開