| 研究生: |
陳穆貞 Chen, Mu-Jean |
|---|---|
| 論文名稱: |
前後測群集隨機控制研究的標準平均差估計 Estimation of Standardized Mean Difference for Pretest-Posttest Cluster-Randomized Control Studies |
| 指導教授: |
王新台
Wang, Shan-Tair |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 公共衛生學系 Department of Public Health |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 標準平均差 、蒙地卡羅模擬法 、統合分析 、前後測群集隨機控制試驗 |
| 外文關鍵詞: | Standardized Mean Difference, Meta-Analysis, Pretest-Posttest Cluster-Randomized Control Stud, Monte-Carlo Simulation |
| 相關次數: | 點閱:125 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前後測隨機控制試驗,為常用以評估介入成效的設計,依試驗單位又可分別為個體與集群。若忽略群集中可能的相關,會使推論錯誤的機會增加。在此目的於比較前後測群集隨機試驗下的三種標準平均差估計。
蒙地卡羅模擬法在此是用於比較三種標準平均差估計的相對效力。,三種估計為以後測差異、前後測改變量差異,與利用共變異數分析調整前測下的後測差異所組成的標準平均差。在此以SAS 9.1版以建立前後測群集試驗資料,並假設資料來自一重複測量混合模型。
研究中的三種效果量估計皆為不偏估計,但在混合共變異數分析下,將調整前測當成共變量納入調整的後測差異,所組成的標準平均差其估計效力相對較高。而在改變量差異組成的標準平均之下,其理論分布與採樣分布不符。並且研究發現以總變異建立的效果量估計,在群集資料中當群中相關性低於0.2時,個體與群集效果量估計皆為不偏,但大於0.2後個體效果量估計會出現估計偏誤。
Pretest-posttest randomized control design is a common approach for evaluation of intervention effects. The units of randomization are clusters not individuals for intervention delivered at group levels. Ignoring the intra-cluster correlation may lead to erroneous inferences about the intervention effects. This study aims to compare three estimators of standardized mean difference (SMD) for data obtained from pretest posttest cluster randomized control trials.
A Monte-Carlo simulation study was performed to compare the relative efficiencies of three estimators of SMD using posttest means, change score means or adjusted means in the analysis of covariance with pretest score as a covariate estimators of SMD. The generation of pseudo data uses SAS 9.1 under the assumption that the pretest and posttest scores follow the mixed repeated measure analysis of variance model.
Although these three estimators appeared to be unbiased, using adjusted means in the analysis of covariance with pretest score as a covariate estimator of SMD seemed to have the highest efficiency. The theoretical and observed sampling variations were generally comparable but the theoretical sampling variation for the estimator using the change score appeared to be less reliable. In addition, if intra-cluster correlation is more then 0.2, the effect size estimators under individual will be biased.
Cohen, J. W. (1988). Statistical power analysis for the behavioral sciences (2nd Edition ed.). New Jersey: Hillsdale.
Cooper, H. M., & Lemke, K. M. (1991). On the role of meta-analysis in personality and social psychology. Personality and Social Psychology Bulletin 17, 245-251.
DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled clinical trials, 7, 177-188.
Donner, A., & Klar, N. (2002). Issues in the meta-analysis of cluster randomized trials. Statistics in Medicine, 21.
Donner, A., Piaggio, G., & Villar, J. (2001). Statistical methods for the meta-analysis of cluster randomization trials. Statistics in Medicine Research, 10, 325-338.
Gilbody, S., Bower, P., Torgerson, D., & Richards, D. (2008). Cluster randomized trials produced similar results to individually randomized trials in meta-analysis of enhanced care for depression. Journal of Clinical Epidemiology, 61, 160-168.
Glaster, R. R. (2002). Accuracy of effect size calculation method for repeated method. Psychology, The University of Memphis. Doctor of Philosophy Degree: 155.
Gotzsche, P. C., & Hrobjartsson, A. (2007). Data extraction errors in meta-analyses. The use standardized mean differences Journal of the American Medical Association, 298(4), 430-437.
Hedges, L. V. (2007a). Correcting a significance test for clustering. Journal of Educational & Behavioral Statistics, 32(2), 151-179.
Hedges, L. V. (2007b). Effect sizes in cluster-randomized designs. Journal of Educational & Behavioral Statistics, 32(4), 341-370.
Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation value for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29(1), 60-87.
Janega, J. B., Murray, D. M., & Varnell, S. P. (2002). Assessing intervention effects in a school-based nutrition intervention trial: which analytic model is most powerful? Health Education & Behavior, 31(6), 756-774.
Laopaiboon, M. (2003). Meta-analyses involving cluster randomization trials: a review of published literature in health care. Statistics in Medicine 12, 515-530.
Morris, S. B. (2007). Estimating effect sizes from pretest-posttest-control group designs [Electronic Version]. Organizational Research Methods, doi:10.1177/1094428106291059. Retrieved July 23.
Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7(1), 105-125.
Murray, D. M. (1998). Design and analysis of group-randomized trials. New York: Oxford press
Murray, D. M., Hannan, P. J., Wolfinge, R. D., Baker, W. L., & Dwyer, J. H. (1998). Analysis of data from group-randomized trials with repeat observations on the same groups. Statistics in Medicine, 17(14), 1581-1600.
Villar, J., Mackey, M. E., Carroli, G., & Donner, A. (2001). Meta-analyses in systematic reviews of randomized controlled trials in perinatal medicine: comparison of fixed and random effect models. Statistics in Medicine, 20, 3635-3647.
Wang, M. C., & Bushman, B. J. (1999). Integrating results-Through meta-analytic review using SAS soft ware Cary,NC: SAS Institute Inc.
White, I. R., & Thomas, J. (2005). Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. Clinical Trials, 2, 141-151.
Yang, L., & Tsiatis, A. A. (2001). Efficiency study of estimator for a treatment effect in a pretest-posttest trial. The american statistician, 55(4), 312-321.
Zwi, K., Woolfenden, S., & Wheeler, D. (2007). School-based education programmes for the prevention of child sexual abse(Review).