| 研究生: |
鄭伊雯 Cheng, Yi-Wen |
|---|---|
| 論文名稱: |
探討胃幽門螺旋桿菌DNA聚合酶I之生化特性 Biochemical characterization of Helicobacter pylori DNA polymerase I |
| 指導教授: |
陳呈堯
Chen, Cheng-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 胃幽門氏桿菌 、DNA聚合酶I 、岡崎片段 、flap核酸內切酶 、核糖核酸酶H |
| 外文關鍵詞: | Helicobacter pylori, DNA polymerase I, Okazaki fragment, Flap endonuclease, RNase H |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胃幽門氏桿菌是常見的人類致病菌之一,全球約有一半以上的人口受到胃幽門氏桿菌的感染,此致病菌造成慢性胃炎、胃潰瘍、甚至胃腺癌。先前的研究指出胃幽門氏桿菌的DNA聚合酶I,本研究簡稱HpyPol I,可以提升此細菌體內基因體的突變率,而這也許提供了胃幽門氏桿菌一個得以生存且附著在我們腸胃道黏膜上的生長優勢。藉由基因剔除的方式干擾HpyPol I的功能會導致該細菌的死亡,顯示出HpyPol I對胃幽門氏桿菌的生存與生長是不可或缺的,然而目前對於HpyPol I的生化功能及特性仍是未知的。透過蛋白質序列的比對,我們發現HpyPol I與A族的大腸桿菌DNA聚合酶I (EcoPol I) 互為同源關係,但其缺少3端往5端的核酸外切酶的功能,或是校正DNA合成時產生錯誤的能力。在本論文研究中,我們證明了HpyPol I可以替補EcoPol I在JS200大腸桿菌中的功能,此一菌株帶有一突變的PolI DNA聚合酶 (EcoPolI) 等位基因而使其對溫度產生敏感性,當細菌生長在37度C時,對溫度敏感的EcoPolI會失去活性。根據此一研究結果我們推測HpyPol I在細菌體內DNA複製的過程中可能扮演與EcoPol I相似的角色。為了瞭解HpyPol I在DNA複製中的功能與特性,我們表達且純化了HpyPol I及其5端核酸外切酶上帶有突變的蛋白。在DNA引子延伸的實驗中,HpyPol I表現出強烈的DNA鏈置換、5端flap核酸內切酶與相似於核糖核酸酶H的活性。HpyPol I能在DNA合成中置換下游的DNA與RNA鏈,且可於單股DNA與雙股DMA間的會合處切除因置換所產生的單股DNA或RNA鏈。HpyPol I的5端核酸外切酶可有效的在具平滑末端的DNA-DNA或RNA-RNA結構進行降解。將5端核酸外切酶結構域上可能為與金屬離子契合的天門冬胺酸殘基進行突變(D121A與D141A),會大幅地去除其5端核酸外切酶、5端flap核酸內切酶及相似於核糖核酸酶H的酵素活性。此外,我們提出在HpyPol I中,聚合酶結構區域與5端核酸外切酶結構區域之間的轉換機制是透過分子內直接轉換的途徑。綜合所有實驗結果,我們推測HpyPol I可能對胃幽門氏桿菌體內基因體複製中岡崎片段的成熟過程中,扮演一個去除RNA引子的重要角色。
Helicobacter pylori (H. pylori) is one of the most common human pathogens on the earth. More than half of the world’s population were/are infected by H. pylori, which lead to chronic gastritis, peptic ulcers, and gastric adenocarcinoma. Previous studies have reported that DNA polymerase I of H. pylori, designated as HpyPol I in this study, contributes to an elevated genome mutation rate, which may provide growth advantages during H. pylori colonization to the mucosa of upper gastrointestinal tract. The disruption of HpyPol I function by the target gene deletion results in the death of bacteria. Although HpyPol I is essential for the growth and viability of H. pylori, its functions and properties are still unclear. HpyPol I is homologous to E. coli DNA polymerase I (EcoPol I) and belongs to the A-family DNA polymerases. Unlike EcoPol I, HpyPol lacks a functional 3’→5’ exonuclease or error-proofreading activity. In this thesis, we demonstrated that HpyPol I can functionally substitute for EcoPol I in the E. coli JS200 cell, which harbors a temperature-sensitive DNA polymerase I allele (pol Its), and may play a similar role in vivo. To understand the biochemical properties of HpyPol I, we purified recombinant HpyPol I and its 5’-3’ exonuclease (5’-Exo) mutants. In the in vitro experiments, HpyPol I shows a robust DNA strand-displacement synthesis, 5’-flap endonuclease, and RNase H-like activity. HpyPol I can displace and cleave the downstream DNA or RNA primer during DNA synthesis at the junction between the single-stranded and duplex DNA/RNA region. The 5’-Exo function of HpyPol I can also efficiently degrade DNA or RNA from a blunt-end, duplex DNA-DNA, or RNA-DNA hybrid. Mutations at the putative, metal-chelating aspartate residues (D121A and D141A) of 5’-Exo domain greatly abolish the 5’-Exo, 5’-flap endonuclease, and RNase H-like activities. Finally, we showed that the switching pathway between DNA polymerase and 5’-Exo domain is through an intramolecular pathway in HpyPol I. Taken together, our results suggest that HpyPol I may play an important role in the maturation of Okazaki fragments during the genome replication of H. pylori.
1. "Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994." IARC Monogr Eval Carcinog Risks Hum 61: 1-241. (1994)
2. Lyamichev V., Brow M. A., Varvel V. E. and Dahlberg J. E. "Comparison of the 5' nuclease activities of Taq DNA polymerase and its isolated nuclease domain." Proc. Natl. Acad. Sci. USA 96: 6143-6148. (1999)
3. Aguilera, A. "The connection between transcription and genomic instability." Embo j 21(3): 195-201. (2002)
4. Aguilera, A. and T. Garcia-Muse. "R loops: from transcription byproducts to threats to genome stability." Mol Cell 46(2): 115-124. (2012)
5. Alm, R. A., L. S. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, D. R. Smith, B. Noonan, B. C. Guild, B. L. deJonge, G. Carmel, P. J. Tummino, A. Caruso, M. Uria-Nickelsen, D. M. Mills, C. Ives, R. Gibson, D. Merberg, S. D. Mills, Q. Jiang, D. E. Taylor, G. F. Vovis and T. J. Trust. "Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori." Nature 397(6715): 176-180. (1999)
6. Alm, R. A. and T. J. Trust. "Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes." J Mol Med (Berl) 77(12): 834-846. (1999)
7. Amblar, M., M. G. de Lacoba, M. A. Corrales and P. Lopez. "Biochemical analysis of point mutations in the 5'-3' exonuclease of DNA polymerase I of Streptococcus pneumoniae. Functional and structural implications." J Biol Chem 276(22): 19172-19181. (2001)
8. Amblar, M. and P. Lopez. "Purification and properties of the 5'-3' exonuclease D190-->a mutant of DNA polymerase I from Streptococcus pneumoniae." Eur J Biochem 252(1): 124-132. (1998)
9. Balakrishnan, L. and R. A. Bambara. "Eukaryotic lagging strand DNA replication employs a multi-pathway mechanism that protects genome integrity." J Biol Chem 286(9): 6865-6870. (2011)
10. Blaser, M. J. "Not all Helicobacter pylori strains are created equal: should all be eliminated?" Lancet 349(9057): 1020-1022. (1997)
11. Blaser, M. J. and J. Parsonnet. "Parasitism by the "slow" bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia." J Clin Invest 94(1): 4-8. (1994)
12. Bornhorst, J. A. and J. J. Falke. "Purification of proteins using polyhistidine affinity tags." Methods Enzymol 326: 245-254. (2000)
13. Bradford, M. M. "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Anal Biochem 72: 248-254. (1976)
14. Bramhill, D. and A. Kornberg. "A model for initiation at origins of DNA replication." Cell 54(7): 915-918. (1988)
15. Camps, M. and L. A. Loeb. "Targeted mutagenesis in E. coli: A powerful tool for the generation of random mutant libraries." Discov Med 3(18): 36-37. (2003)
16. Camps, M. and L. A. Loeb. "Use of Pol I-deficient E. coli for functional complementation of DNA polymerase." Methods Mol Biol 230: 11-18. (2003)
17. Cerritelli, S. M. and R. J. Crouch. "Ribonuclease H: the enzymes in eukaryotes." Febs j 276(6): 1494-1505. (2009)
18. Diaz, A., S. A. Lacks and P. Lopez. "The 5' to 3' exonuclease activity of DNA polymerase I is essential for Streptococcus pneumoniae." Mol Microbiol 6(20): 3009-3019. (1992)
19. Diaz, A., M. E. Pons, S. A. Lacks and P. Lopez. "Streptococcus pneumoniae DNA polymerase I lacks 3'-to-5' exonuclease activity: localization of the 5'-to-3' exonucleolytic domain." J Bacteriol 174(6): 2014-2024. (1992)
20. Elitsur, Y., Z. Lawrence, H. Russmann and S. Koletzko. "Primary clarithromycin resistance to Helicobacter pylori and therapy failure in children: the experience in West Virginia." J Pediatr Gastroenterol Nutr 42(3): 327-328. (2006)
21. Ganai, R. A., G. O. Bylund and E. Johansson. "Switching between polymerase and exonuclease sites in DNA polymerase epsilon." Nucleic Acids Res 43(2): 932-942. (2015)
22. Garcia-Ortiz, M. V., S. Marsin, M. E. Arana, D. Gasparutto, R. Guerois, T. A. Kunkel and J. P. Radicella. "Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability." PLoS Genet 7(6): e1002152. (2011)
23. Garg, P., C. M. Stith, N. Sabouri, E. Johansson and P. M. Burgers. "Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication." Genes Dev 18(22): 2764-2773. (2004)
24. Ge, Z. and D. E. Taylor. "Contributions of genome sequencing to understanding the biology of Helicobacter pylori." Annu Rev Microbiol 53: 353-387. (1999)
25. Graham, D. Y. "Antibiotic resistance in Helicobacter pylori: implications for therapy." Gastroenterology 115(5): 1272-1277. (1998)
26. Gutman, P. D. and K. W. Minton. "Conserved sites in the 5'-3' exonuclease domain of Escherichia coli DNA polymerase." Nucleic Acids Res 21(18): 4406-4407. (1993)
27. Harrington, J. J. and M. R. Lieber. "Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair." Genes Dev 8(11): 1344-1355. (1994)
28. Helmrich, A., M. Ballarino and L. Tora. "Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes." Mol Cell 44(6): 966-977. (2011)
29. Hofreuter, D. and R. Haas. "Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling." J Bacteriol 184(10): 2755-2766. (2002)
30. Hunt, R. H. "Hp and pH: implications for the eradication of Helicobacter pylori." Scand J Gastroenterol Suppl 196: 12-16. (1993)
31. Iwona J. Fijalkowska, R. M. S., and Piotr Jonczyk. "DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair." FEMS Microbiol Rev 36(6): 1105–1121. (2012)
32. Kang, J. and M. J. Blaser. "Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori." Nat Rev Microbiol 4(11): 826-836. (2006)
33. Kao, H. I. and R. A. Bambara. "The protein components and mechanism of eukaryotic Okazaki fragment maturation." Crit Rev Biochem Mol Biol 38(5): 433-452. (2003)
34. Kato, S. and S. Fujimura. "Primary antimicrobial resistance of Helicobacter pylori in children during the past 9 years." Pediatr Int 52(2): 187-190. (2010)
35. Kato, S., S. Fujimura, H. Udagawa, T. Shimizu, S. Maisawa, K. Ozawa and K. Iinuma. "Antibiotic resistance of Helicobacter pylori strains in Japanese children." J Clin Microbiol 40(2): 649-653. (2002)
36. Kennedy, S. R., C. Y. Chen, M. W. Schmitt, C. N. Bower and L. A. Loeb. "The biochemistry and fidelity of synthesis by the apicoplast genome replication DNA polymerase Pfprex from the malaria parasite Plasmodium falciparum." J Mol Biol 410(1): 27-38. (2011)
37. Kornberg, A. and T. A. Baker. DNA replication. New York, W.H. Freeman. (1992)
38. Lieber, M. R.. "The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair." Bioessays 19(3): 233-240. (1997)
39. Lovett, S. T.. "The DNA Exonucleases of Escherichia coli." EcoSal Plus 4(2). (2011)
40. Lyamichev, V., M. A. Brow and J. E. Dahlberg. "Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases." Science 260(5109): 778-783. (1993)
41. Marshall, B. and J. R. Warren. "UNIDENTIFIED CURVED BACILLI IN THE STOMACH OF PATIENTS WITH GASTRITIS AND PEPTIC ULCERATION." The Lancet 323(8390): 1311-1315. (1984)
42. Megraud, F.. "Epidemiology and mechanism of antibiotic resistance in Helicobacter pylori." Gastroenterology 115(5): 1278-1282. (1998)
43. Megraud, F., S. Coenen, A. Versporten, M. Kist, M. Lopez-Brea, A. M. Hirschl, L. P. Andersen, H. Goossens and Y. Glupczynski. "Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption." Gut 62(1): 34-42. (2013)
44. Mizrahi, V. and P. Huberts. "Deoxy- and dideoxynucleotide discrimination and identification of critical 5' nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis." Nucleic Acids Res 24(24): 4845-4852. (1996)
45. Nitharwal, R. G., V. Verma, S. Dasgupta and S. K. Dhar. "Helicobacter pylori chromosomal DNA replication: current status and future perspectives." FEBS Lett 585(1): 7-17. (2011)
46. Olivera, R. C. L. a. B. M. "Transient Generation of Displaced Single-Stranded DNA during Nick Translation." Cell 31: 53-60. (1982)
47. Park, Y., H. Choi, D. S. Lee and Y. Kim. "Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site." Mol Cells 7(3): 419-424. (1997)
48. Peek, R. M., Jr. and M. J. Blaser. "Helicobacter pylori and gastrointestinal tract adenocarcinomas." Nat Rev Cancer 2(1): 28-37. (2002)
49. Peterson, W. L. "Helicobacter pylori and peptic ulcer disease." N Engl J Med 324(15): 1043-1048. (1991)
50. Roberts, R. W. and D. M. Crothers. "Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition." Science 258(5087): 1463-1466. (1992)
51. Roos, W. P. and B. Kaina. "DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis." Cancer Lett 332(2): 237-248. (2013)
52. Setlow, P., D. Brutlag and A. Kornberg. "Deoxyribonucleic acid polymerase: two distinct enzymes in one polypeptide. I. A proteolytic fragment containing the polymerase and 3' leads to 5' exonuclease functions." J Biol Chem 247(1): 224-231. (1972)
53. Shaw, N. N. and D. P. Arya. "Recognition of the unique structure of DNA:RNA hybrids." Biochimie 90(7): 1026-1039. (2008)
54. Soni, R. K., P. Mehra, G. Mukhopadhyay and S. K. Dhar. "Helicobacter pylori DnaB helicase can bypass Escherichia coli DnaC function in vivo." Biochem J 389(Pt 2): 541-548. (2005)
55. Suerbaum, S. and C. Josenhans. "Helicobacter pylori evolution and phenotypic diversification in a changing host." Nat Rev Microbiol 5(6): 441-452. (2007)
56. Suerbaum, S. and P. Michetti. "Helicobacter pylori Infection." New England Journal of Medicine 347(15): 1175-1186. (2002)
57. Takeshita, S., M. Sato, M. Toba, W. Masahashi and T. Hashimoto-Gotoh. "High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection." Gene 61(1): 63-74. (1987)
58. Uson, M. L., S. Ghosh and S. Shuman. "The DNA Repair Repertoire of Mycobacterium smegmatis FenA Includes the Incision of DNA 5' Flaps and the Removal of 5' Adenylylated Products of Aborted Nick Ligation." J Bacteriol 199(17). (2017)
59. Versalovic, J., M. S. Osato, K. Spakovsky, M. P. Dore, R. Reddy, G. G. Stone, D. Shortridge, R. K. Flamm, S. K. Tanaka and D. Y. Graham. "Point mutations in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance." J Antimicrob Chemother 40(2): 283-286. (1997)
60. Xu, Y., V. Derbyshire, K. Ng, X. C. Sun, N. D. Grindley and C. M. Joyce. "Biochemical and mutational studies of the 5'-3' exonuclease of DNA polymerase I of Escherichia coli." J Mol Biol 268(2): 284-302. (1997)
61. Xu, Y., O. Potapova, A. E. Leschziner, N. D. Grindley and C. M. Joyce. "Contacts between the 5' nuclease of DNA polymerase I and its DNA substrate." J Biol Chem 276(32): 30167-30177. (2001)
62. Zawilak, A., M. C. Durrant, P. Jakimowicz, S. Backert and J. Zakrzewska-Czerwinska. "DNA binding specificity of the replication initiator protein, DnaA from Helicobacter pylori." J Mol Biol 334(5): 933-947. (2003)