簡易檢索 / 詳目顯示

研究生: 陳勇邑
Chen, Yong-yi
論文名稱: 利用直流電漿化學氣相沉積法沉積鑽石薄膜與氫端鑽石導電特性量測
Growth of Diamond Films by DC-PECVD and Conductivity Measurement of Hydrogenated Diamond Surface
指導教授: 曾永華
Tzeng, Yung-hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 氫端鑽石直流電漿化學氣相沉積鑽石薄膜
外文關鍵詞: Hydrogenated daimond, Diamond films, DC-PECVD
相關次數: 點閱:87下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用自行組裝的直流電漿化學氣相沉積 (DC-PECVD)的機台沉積多晶鑽石薄膜。這儀器具備水冷功能,而我們改變沉積鑽石的參數,例如電流密度、通入氣體濃度、基板種類…等等,並觀察所成長出的鑽石薄膜的變化。
    鑽石薄膜也可在沒有水冷的情況下成長,此時可添加直流及60 Hz的交流電壓於電極上(材質為鉬),並觀察加入交流電壓後所沉積鑽石的改變。我們發現,過高的溫度會使得機台中的O形環融化,為避免此種狀況發生,連結電源供應器與鉬電極間的導電材料需為不銹鋼,這是因為不銹鋼導熱能力不佳,因此可減少熱能傳遞至O形環;而使用鉬電極則是因鉬電極非常耐溫 (可達2600℃)而可避免電極被破壞。我們發現此法雖可成長鑽石薄膜,但成長效率較低,這是由於電源輸出功率不可太大,否則系統會產生前述的過熱問題而破壞系統。當使用水冷系統後,則過熱問題則可大幅度改善,因此可用高電源輸出功率,藉此提升成長速率,進一步我們也找出使用水冷系統後沉積鑽石薄膜的最佳的参數。  
    在成長鑽石薄膜時,若通入適量的氫氣,則可成長出氫端鑽石薄膜,此種薄膜具有特殊的電性;當其接觸到空氣後會在表面形成一層表面導電層,我們藉由電性量測的確發現無論是多晶或單晶鑽石表面上均可存在此導電層。之後我們將此試片置於氧氣與氬氣所產生的電漿環境中,則可使試片的導電性消失。當再次使用氫電漿處理後,並將薄膜接觸到空氣後約30分鐘後,便可恢復氫端鑽石的表面導電層。此種導電薄膜導在新式電子元件 (如場效電晶體)具有很好的潛力。

    We have grown poly-crystalline diamond films by means of a home-built DC-PECVD. We observed the film variation by fine-tuning the growth parameters such as discharge current density, feeding gas concentration, substrate materials etc.
    Diamond films can be grown without water cooling when electrodes made of Molybdenum were added with a 60 Hz AC power superimposed with a DC voltage. We found that vacuum O-rings were melted at high growth temperature. To avoid the drawback, the connector material between the power supply and the Molybdenum electrode needs to be stainless steel because of its low thermal conductivity which decreases the heat transfer to O-rings. Molybdenum’s high melting point of 2600℃ avoided the thermal induced electrode breakdown. Because a high input power can still cause thermal induced system breakdown, the growth rate of diamond films was still limited. We found that this drawback can be improved by adding a water cooling system that removed heat effectively. Thus, we can use a higher input power which increases the diamond film growth rate. By a systematic study, the best growth condition was found.
    Hydrogen terminated diamond films were grown by feeding an adequate hydrogen flow into the gas mixture for plasma generation. There is a conductive layer on the surface of a diamond film, after the sample was exposed to ambient air. The conductive layers were found on both poly- and single- crystalline diamond films. The conductive layer disappeared after the sample was exposed to Air- or Ar- plasma. When the sample was treated with a hydrogen plasma again and then exposed to ambient air for about 30 minutes, the conductive layer was restored again. This conductive film has potential for application to many new electronic devices.

    第一章 緒論.............................................1 1.1 前言..................................................1 1.2 鑽石的特性............................................1 1.3 鑽石的性質及應用......................................3 1.4 研究動機與目的........................................7 第二章 理論基礎與文獻回顧 ...............................8 2.1 氫端表面原子力顯微鏡微影法............................8 2.2 鑽石的散熱應用.......................................11 2.2.1 製作SOD晶圓........................................13 2.2.2 SOD晶圓的熱處理解析................................14 2.3 鑽石與金屬的接觸.....................................16 2.4 鑽石的摻雜...........................................17 第三章 氫端鑽石的特性..................................18 3.1 前言.................................................18 3.2 氫端鑽石的介紹.......................................18 3.3 接觸空氣中水分子的氫端鑽石...........................19 3.3.1 氫端鑽石表面導電度的探討...........................21 3.3.2 空氣中水分吸附層的缺點.............................24 3.4 覆蓋C60的氫端鑽石....................................24 3.5 覆蓋C60F48的氫端鑽石.................................26 第四章 CVD法成長鑽石薄膜...............................27 4.1 前言.................................................27 4.2 CVD簡介..............................................28 4.2.1 薄膜沉積...........................................28 4.2.2 CVD薄膜成長........................................28 4.2.3 化學氣相沉積的化學反應過程.........................30 4.2.4 化學氣相沉積的化學反應步驟.........................30 4.3 CVD鑽石的由來........................................32 4.4 使用化學氣相沉積成長鑽石.............................33 4.4.1 熱燈絲化學氣相沉積法...............................33 4.4.2 直流電漿化學氣相沉積法.............................35 4.4.3 微波電漿化學氣相沉積法.............................36 4.5 成長CVD鑽石的化學特性................................39 4.5.1 鑽石成核...........................................43 第五章 儀器介紹與實驗參數..............................44 5.1 儀器介紹.............................................44 5.1.1 掃描式電子顯微鏡...................................44 5.1.2 拉曼光譜儀.........................................45 5.1.3 直流電漿化學氣相沉積...............................46 5.2 直流電漿CVD沉積鑽石..................................49 5.2.1 基板前處理.........................................49 5.2.2 沉積薄膜前的步驟...................................49 5.2.3 開始沉積鑽石薄膜的儀器控制步驟.....................49 5.2.4 實驗數據...........................................52 5.3材料耐溫的問題........................................54 5.4 交流電壓的輔助的直流電漿CVD沉積鑽石..................55 5.4.1 交流電壓的輔助.....................................55 5.4.2 實驗數據(1)........................................57 5.4.3 實驗數據(2)........................................59 5.5 加裝水冷系統後的直流電漿CVD沉積鑽石..................61 5.5.1 水冷系統...........................................61 5.5.2 改變電流密度的影響.................................62 5.5.3 改變工作真空壓力的影響.............................67 5.5.4 改變沉積時間的影響.................................68 5.5.5 石英 (quartz)基板上沉積鑽石薄膜....................69 5.6 氫端鑽石表面導電層實驗...............................70 5.6.1 量測多晶鑽石的表面導電度...........................71 5.6.2 量測單晶鑽石的表面導電度...........................73 第六章 結論與未來展望..................................74

    [1] 宋健民,鑽石合成,2000年七月。
    [2] http://phycomp.technion.ac.il/~david/thesis/node3.html.
    [3] http://www.ylhxjx.com/Article/gkxx/200812/5289.shtml.
    [4] J. C. Angus, Thin Solid Films, Vol. 216, p. 126, 1992.
    [5] M. N. Yoder, "Synthetic Diamond: Emerging CVD Science and Technology", John Wiley & Son, 1993.
    [6] S. T. Lee, Z. Lin, and X. Jiang, Materials Science and Engineering, Vol. 25, p. 123, 1999.
    [7] 宋健民,工業材料,1995 年四月,第58頁。
    [8] C. Wort, R. Batmer, Materialstoday, 2008.
    [9] Ghandhi, K. Sorab, "VLSI Fabrication Principles: silicon and Gallium Arsenide", 2nd ed., John Wiley & Sons Inc, 1994.
    [10] G. Anner,, "Planar processing Primer", Van Nostrand Reinhold Company, 1990.
    [11] P. May, P. Trans., R. Soc. Lond., Vol. 358, 2000.
    [12] S. Wolf, R. Tauber, Silicon Processing for the VLSI Era, Vol. 1, p. 151, 1986.
    [13] A. Jones and P. O’Brien, "CVD of compound semiconductors : precursor synthesis, development and applications", Wiley-VCH, 1997.
    [14] www.e6cvd.com.
    [15] L. Ley, J. Ristein, F. Meier, M. Riedel, P. Strobel, Physica B, Vol. 376-377, pp., 2006.
    [16] M. Brezeanu, T. Butler, G.A.J. Amaratunga, F. Udrea, N. Rupesinghe, S. Rashid, Diamond and Related Materials, Vol. 17, pp.736-740, 2008.
    [17] P. Saha, S. Kundoo, A.N. Banerjee, K.K. Chattopadhyay, Vacuum, Vol. 72, pp.129-134, 2004.
    [18] H. Noda, A. Hokawarada, Diamond and Related Materials, Vol. 6, p865, 1997.
    [19] J. W. Park S. S. Lee B. S. So Y. H. Jung N. Kawasegi N. Morita D. W. Lee, Journal of Materials Processing Technology, Vol. 187-188, 2007.
    [20] http://arstechnica.com/hardware/news/2008/09/moore.ars.
    [21] http://copperhome.net/Article/tybk/200906/44135.html.
    [22] Y. Kaibara, K. Sugata, M. Tachiki, H. Umezawa, H. Kawarada, Diamond and Related Materials, Vol. 12, pp. 560-564, 2003.
    [23] T. Banno, M.Tachiki, H. Seo, H. Umezawa, H. Kawarada, Diamond and Related Materials, Vol. 11, pp.387-391, 2002.
    [24] A. Noy, C.D. Frisbie, L.F. Rozsnyai, M.S. Wrighton, C.M. Lieber, J. Am. Chem., Soc. Vol. 117, pp. 7943-7951, 1995.
    [25] E.W. van der Vegte, G. Hadziioannou, Langmuir, Vol. 13, pp. 4357-4368, 1997.
    [26] S. Biggs, P. Mulvaney, J. Chem. Phys. Vol. 100, p8501, 1994.
    [27] H. Looi, L. Pang, M. Whitfield, J. Foord, Richard B. Jackman, Diamond and Related Materials, Vol. 9, pp. 975-981, 2000.
    [28] A. Aleksov, J.M. Gobien, X. Li, J.T. Prater, Z. Sitar, Diamond and Related Materials, Vol. 15, pp.248-253, 2006.
    [29] J.W. van der Sande, Proceedings of SPIE, Vol. 2428, p.610, 1995.
    [30] A. Aleksov, X. Li, N. Govindaraju, J.M. Gobien, S.D. Wolter, J.T. Prater, Z. Sitar, Diamond and Related Materials, Vol. 14, pp. 308-313, 2005.
    [31] F. Fang, C.A. Hewett, M.G. Fernandes, S.S. Lan, IEEE Trans. Electron Devices, Vol. 36, p. 1783, 1989.
    [32] M. Werner, O. Dorsch, H.U. Baerwind, A. Ersoy, E. Obermeier, C. Johnston, S. Romani, P.R. Chalker, V. Moore and I.M. Buckley-Golder, Diamond and Related Materials, Vol. 3, p. 983, 1994.
    [33] V. Venkatesan, D.M. Malta, K. Das, A.M. Belu, J. Appl. Phys. Vol. 74, p.1179, 1993.
    [34] C. Zhen, Y. Wang, S. He, Q. Guo, Z. Yan, Y. Pu, Optical Materials, Vol. 23, pp. 117-121, 2003.
    [35] Tokishige ., T. Minoru, S. Hokuto, U. Hitoshi, K. Hiroshi, Diamond and Related Materials, Vol. 11, pp. 387-391, 2002.
    [36] M. Kasu, K. Ueda, H. Kageshima, Y. Yamauchi, Diamond and Related Materials, Vol. 17, pp. 741-744, 2008.
    [37] M. Brezeanu, T. Butler, G.A.J. Amaratunga, F. Udrea, N. Rupesinghe, S. Rashid, Diamond and Related Materials, Vol. 17, pp. 736-740, 2008.
    [38] J.B. Cui, M. Stammler, J. Ristein, L. Ley, J. Appl. Phys. Vol. 88, p. 3667, 2000.
    [39] M.I. Landstrass, K.V. Ravi, Appl. Phys. Lett.,Vol. 55, p.975, 1989.
    [40] K. Hayashi, S. Yamanaka, H. Okushi, K. Kajilur, Appl. Phys. Lett., Vol. 68, p.376, 1996.
    [41] H.J. Looi, R.B. Jackman, J.S. Foord, Appl. Phys. Lett., Vol. 72, p.353, 1998.
    [42] Steven Prawer, Robert J. Nemanich, Phil. Trans. R. Soc. Lond. A, Vol. 362, pp. 2537-2565, 2004.
    [43] http://www.chm.bris.ac.uk/lectures/Diamondtalk/bachmann.htm.
    [44] J. A. Garrido, C. E. Nebel, R. Todt, G. R. sel, M. C. Amann, and M. Stutzmann,
    Applied Physics Letters, Vol. 82, 2003.
    [45] R. Sung Gi, K. Tashiro, S. Tanaka, T. Fujisawa, H. Kimua, T. Kurosu, M. Iida, Jpn. J. Appl. Phys. Vol. 38, p.3492, 1999.
    [46] J.B. Cui, J. Ristein, L. Ley, Phys. Rev. Lett. Vol. 81, p429, 1998.
    [47] J. Ristein, F. Maier, M. Riedel, M. Stammer, L. Ley, Diamond and Related Materials, Vol. 10, pp. 416-422, 2001.
    [48] C. Su, J.C. Lin, Surf. Sci. Vol. 406, p.149, 1998.
    [49] J.B. Cui, J. Ristein, L. Ley, Phys. Rev. B, Vol. 59, p.5847, 1999.
    [50] L. Ley, J. Ristein, F. Meier, M. Riedel, P. Strobel, Physica B, Vol. 376-377, pp. 262-267, 2006.
    [51] B.F. Mantel, M. Stammler, J. Ristein, L. Ley, Diamond and Related Materials, Vol. 9, p. 1032, 2000.
    [52] J.C. Angus, H.B. Martin, U. Landau, Y. Evsteleeva, B. Miller, N. Vinokur, N. Diam. Front. Carbon Technol. Vol. 9, p. 175, 1999.
    [53] G. Wedler, "Lehrbuch der Physikalischen Chemie", 3rd Ed, VCH Verlagsgesellschaft, Weinheim, p. 297, 1987.
    [54] P. Strobel, M. Riedel, J. Ristein & L. Ley, Nature, Vol. 430, p. 22, 2004.
    [55] J. B. Cui,., J. Ristein, L. Ley, Phys. Rev. Lett., Vol. 81, pp. 429-432, 1998.
    [56] F. Maier, , J. Ristein, L. Ley, Phys. Rev. B, Vol. 64, p. 165411, 2001.
    [57] 方維輪等,奈米檢測技術,2009 年四月,第318頁。

    下載圖示 校內:2010-07-27公開
    校外:2010-07-27公開
    QR CODE