簡易檢索 / 詳目顯示

研究生: 蔡仲豪
Tsai, Chung-Hao
論文名稱: 5052鋁合金陽極氧化鋁的製備技術與特性研究
A study on fabrication and characteristic of porous anodic aluminum oxide from 5052 aluminum alloy
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 5052鋁合金陽極氧化鋁光致螢光表面拉曼增強散射
外文關鍵詞: 5052 aluminum alloy, anodic aluminum oxide, photoluminescence, surface enhanced Raman scattering
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討於5052鋁合金上結合複合式脈衝陽極氧化(Hybrid Pulse Anodization, HPA)技術,於室溫(25 °C)低電位(40 V)草酸及低溫(0 °C)高電位(150 V)磷酸電解液中製備奈米多孔型陽極氧化鋁(Anodic Aluminum Oxide, AAO)模板。為了解決鋁合金粗糙表面不利於陽極氧化鋁模板生長,首先針對陽極氧化前處理中電化學拋光製程改善,透過調整過氯酸與乙醇拋光溶液濃度以兩階段式電化學拋光取代原有一次電化學拋光製程,不僅有助於改善陽極氧化鋁模板孔洞形貌同時可使陽極氧化製程穩定度提升。接著進行兩種不同製程,分別為兩階段室溫低電位草酸及低溫高電位磷酸陽極氧化製程,結合複合式脈衝陽極氧化有效移除焦耳熱成功於5052鋁合金上製備AAO模板,並以場發射式電子顯微鏡(FE-SEM)觀察5052鋁合金AAO形貌,發現於相同製程參數下其孔洞形貌及結構與純鋁AAO有明顯差異,由於5052鋁合金中含有2.2~2.8%的鎂元素,將會在陽極氧化過程中反應形成氫氧化鎂並放出反應熱,導致陽極氧化反應加速而使5052鋁合金AAO成長速率高於高純度(99.99%)鋁AAO,而氫氧化鎂生成時所產生之氫氣與反應熱同時也造成5052鋁合金AAO孔徑有所改變。在5052鋁合金AAO-PL光譜中,各參數所製備AAO之主要PL波峰皆位於波長420 nm附近,且PL訊號強度隨著陽極氧化時間與電位的增加而使氧缺陷及草酸根離子摻雜量增加而變強,但隨著擴孔時間增加,氧缺陷及草酸根離子脫離AAO孔壁,含量減少而導致PL訊號減弱;同時可觀察到隨著陽極氧化電位上升於波長470 nm之波峰產生偏移,推測為陽極氧化電位上升使反應加劇而使5052合金中其他元素摻雜進入AAO孔壁中所致。最後,使用一階段所製備之5052鋁合金AAO並於表面濺鍍上鉑金層作為表面拉曼增強散射(SERS)之基板,開發一快速、簡易及低成本之SERS基板,分別使用不同陽極氧化電位與不同擴孔時間製備出不同孔徑大小基板,並從SERS基板結構與UV-vis反射光譜去分析其拉曼增強效應之差異。

    Anodic aluminum oxide (AAO) template has been widely applied to different fields such as photonics, semiconductor, biomedical, chemical engineering and so on. Conventional AAO template was formed using direct-current anodization (DCA) from high-purity (99.99% or more) aluminum (Al) foil at low temperature (0~10 °C). In this article, we have successfully demonstrated the greatly enhanced growth behavior of 5052 Al-Mg alloy (95.5% Al) using hybrid pulse anodization (HPA) with pulsing normal-positive and small-negative potential to synthesize nanoporous AAO at room temperature (RT, 25 °C). The growth rate at RT is higher than that at low temperature. The Mg impurity in the 5052 Al alloy plays an important role during anodization; it influences the AAO property and composition. The Mg contents in 5052 Al alloy could contribute to the growth of AAO. Also, the AAO fabricated by 5052 Al alloy is found quite different from pure Al in the average pore size. In addition, we investigated the photoluminescence (PL) difference between 5052 Al alloy and high purity Al, to prove that the composition difference also caused in the optical characteristic change. In the end, we proposed a fast, easy and low cost SERS substrate by AAO from 5052 Al alloy and platinum to investigate the anodization parameters effect on enhancement of Raman intensity.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 前言 1 1-1 研究背景 1 1-2 研究動機 4 1-3 本文架構 6 第二章 文獻回顧 8 2-1 鋁之陽極氧化機制及製程 8 2-1-1 多孔型陽極氧化結構 8 2-1-2 陽極氧化之化學反應及孔洞自組裝機制 10 2-1-3 陽極氧化鋁成長機制 14 2-1-4 陽極氧化製程及其結構 16 2-2 陽極氧化製程參數與結構 21 2-2-1 陽極電位 21 2-2-2 電解液種類及濃度 24 2-2-3 陽極氧化時間 27 2-2-4 擴孔處理時間 28 2-3 陽極氧化鋁光學檢測分析及應用 29 2-3-1 光激螢光分析 29 2-3-2 可見光反射光譜分析 31 2-3-3 表面增強拉曼散射(SERS) 34 第三章 實驗方法與步驟 37 3-1 實驗流程 37 3-2 實驗設備 40 3-3 實驗原料 44 3-4 實驗步驟 45 3-4-1 前處理 45 3-4-2 陽極氧化處理(低電位) 45 3-4-3 陽極氧化處理(高電位) 46 3-4-4 擴孔處理 46 3-5 觀測與分析 47 3-5-1 高解析場發射掃描式電子顯微鏡 (Scanning electron microscope) 47 3-5-2 光激發螢光光譜 (photoluminescence spectroscopy) 50 3-5-3 紫外光 / 可見光/ 近紅外光分光光譜儀(UV/VIS/NIR Spectrophotometer) 52 3-5-4 灰階影像孔洞分析-圖像分析軟體 Image J 53 第四章 結果與討論 54 4-1 二次電化學拋光製程於市售鋁合金表面粗糙度改善 54 4-1-1 一次電化學拋光製程對鋁合金表面改善 54 4-1-2 第一階段電化學拋光製程時間對鋁合金表面改善 56 4-1-3 兩階段電化學拋光製程對鋁合金表面改善 60 4-1-4 兩階段拋光對鋁合金陽極氧化製程之影響 62 4-2 5052鋁合金高低電位陽極氧化製程 66 4-2-1 5052鋁合金低電位草酸陽極氧化製程 66 4-2-2 5052鋁合金高電位磷酸陽極氧化製程 71 4-2-3 5052鋁合金中鎂元素對陽極氧化之影響探討 75 4-3 5052鋁合金陽極氧化鋁之光激螢光(PL)性質 80 4-3-1 陽極氧化時間對5052 AAO光激螢光之影響 80 4-3-2 陽極氧化電位對5052 AAO光激螢光之影響 81 4-3-3 擴孔時間對5052 AAO光激螢光之影響 82 4-3-4 各參數對5052鋁合金AAO光激螢光之影響與合金雜質影響討論83 4-4 5052鋁合金製備陽極氧化鋁模板於表面拉曼增強光譜之應用 88 4-4-1 5052鋁合金低電位小孔徑AAO模板之SERS效應 88 4-4-2 5052鋁合金高電位大孔徑AAO模板之SERS效應 92 第五章 結論與未來工作 97 5-1 結論與本論文貢獻 97 5-2 未來工作 99 參考文獻 100

    [1] H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina," Science, vol. 268, pp. 1466-1468, Jun 1995.
    [2] G. E. Thompson, "Porous anodic alumina: Fabrication, characterization and applications," Thin Solid Films, vol. 297, pp. 192-201, Apr 1997.
    [3] F. Keller, M. S. Hunter, and D. L. Robinson, "Structural features of oxide coatings on aluminium," Journal of the Electrochemical Society, vol. 100, pp. 411-419, 1953.
    [4] Z. Wu, C. Richter, and L. Menon, "A study of anodization process during pore formation in nanoporous alumina templates," Journal of the Electrochemical Society, vol. 154, pp. E8-E12, 2007.
    [5] F. Y. Li, L. Zhang, and R. M. Metzger, "On the growth of highly ordered pores in anodized aluminum oxide," Chemistry of Materials, vol. 10, pp. 2470-2480, Sep 1998.
    [6] S. K. Thamida and H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos, vol. 12, pp. 240-251, Mar 2002.
    [7] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, pp. 6023-6026, Dec 1 1998.
    [8] S. Wang, G. J. Yu, J. L. Gong, D. Z. Zhu, and H. H. Xia, "Large-area uniform nanodot arrays embedded in porous anodic alumina," Nanotechnology, vol. 18, Jan 10 2007.
    [9] O. Jessensky, F. Muller, and U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics Letters, vol. 72, pp. 1173-1175, Mar 1998.
    [10] I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx, "The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime," Applied Surface Science, vol. 222, pp. 215-225, Jan 30 2004.
    [11] V. P. Parkhutik and V. I. Shershulsky, "THE ORETICAL MODELING OF POROUS OXIDE-GROWTH ON ALUMINUM," Journal of Physics D-Applied Physics, vol. 25, pp. 1258-1263, Aug 14 1992.
    [12] H. Masuda, K. Kanezawa, and K. Nishio, "Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope," Chemistry Letters, pp. 1218-1219, 2002.
    [13] M. Jaafar, D. Navas, M. Hernández-Vélez, J. L. Baldonedo, M. Vázquez, and A. Asenjo, "Nanoporous alumina membrane prepared by nanoindentation and anodic oxidation," Surface Science, vol. 603, pp. 3155-3159, 2009.
    [14] C. Y. Liu, A. Datta, and Y. L. Wang, "Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces," Applied Physics Letters, vol. 78, p. 120, 2001.
    [15] B. Chen and K. Lu, "Moiré Pattern Nanopore and Nanorod Arrays by Focused Ion Beam Guided Anodization and Nanoimprint Molding," Langmuir, vol. 27, pp. 4117-4125, 2011.
    [16] S.-H. Chen, D.-S. Chan, C.-K. Chen, T.-H. Chang, Y.-H. Lai, and C.-C. Lee, "Nanoimprinting Pre-Patterned Effects on Anodic Aluminum Oxide," Japanese Journal of Applied Physics, vol. 49, p. 015201, 2010.
    [17] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, "Square and triangular nanohole array architectures in anodic alumina," Advanced Materials, vol. 13, pp. 189-192, 2001.
    [18] J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. r. Schilling, and U. Gösele, "Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers," Journal of Applied Physics, vol. 94, p. 4757, 2003.
    [19] S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G. Ozin, "Highly ordered nanosphere imprinted nanochannel alumina (NINA)," Advanced Materials, vol. 16, pp. 2193-2196, 2004.
    [20] H. Masuda and M. Satoh, "Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask," Japanese Journal of Applied Physics Part 2-Letters, vol. 35, pp. L126-L129, Jan 15 1996.
    [21] W. Lee, R. Scholz, and U. Gösele, "A Continuous Process for Structurally Well-Defined Al2O3Nanotubes Based on Pulse Anodization of Aluminum," Nano Letters, vol. 8, pp. 2155-2160, 2008.
    [22] W. Lee, "The Anodization of Aluminum for Nanotechnology Applications," JOM, vol. 62, pp. 57-63, 2010.
    [23] W. Lee, J.-C. Kim, and U. Gösele, "Spontaneous Current Oscillations during Hard Anodization of Aluminum under Potentiostatic Conditions," Advanced Functional Materials, vol. 20, pp. 21-27, 2010.
    [24] H. Masuda, F. Hasegawa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution," Journal of The Electrochemical Society, vol. 144, pp. L127-L130, 1997.
    [25] H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Japanese Journal of Applied Physics, vol. 37, pp. L1340-L1342, 1998.
    [26] W. Lee, R. Ji, U. Goesele, and K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard anodization," Nature Materials, vol. 5, pp. 741-747, Sep 2006.
    [27] H. T. K. Ebihara, M. Nagayama,, "Structure and density of anodic oxide films formed on aluminum in sulfuric acid solution," J. Met. Finish. Soc. Japan, vol. 33, pp. 156–164, 1982.
    [28] Osulliva.Jp and G. C. Wood, "Morphology and mechanism of formation of porous anodic films on aluminium," Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 317, pp. 511-543, 1970.
    [29] G. E. Thompson and G. C. Wood, "Porous anodic film formation on aluminum," Nature, vol. 290, pp. 230-232, 1981.
    [30] S. Ono, M. Saito, and H. Asoh, "Self-ordering of anodic porous alumina formed in organic acid electrolytes," Electrochimica Acta, vol. 51, pp. 827-833, Nov 2005.
    [31] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, "Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization," Journal of The Electrochemical Society, vol. 153, pp. B384-B391, 2006.
    [32] Y. F. Jia, H. H. Zhou, P. Luo, S. L. Luo, J. H. Chen, and Y. F. Kuang, "Preparation and characteristics of well-aligned macroporous films on aluminum by high voltage anodization in mixed acid," Surface & Coatings Technology, vol. 201, pp. 513-518, Oct 2006.
    [33] Z. H. He, L. J. Yao, M. J. Zheng, L. Ma, S. H. He, and W. Z. Shen, "Enhanced humidity sensitivity of nanoporous alumina films by controlling the concentration and type of impurity in pore wall," Physica E-Low-Dimensional Systems & Nanostructures, vol. 43, pp. 366-371, Nov 2010.
    [34] Z. S. Feng, X. J. Chen, J. J. Chen, and J. Hu, "A novel humidity sensor based on alumina nanowire films," Journal of Physics D-Applied Physics, vol. 45, Jun 2012.
    [35] Y. Yamamoto, N. Baba, and S. Tajima, "Colored materials and photo-luminescence centers in anodic film on aluminum," Nature, vol. 289, pp. 572-574, 1981.
    [36] G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, and G. G. Siu, "Strong blue emission from anodic alumina membranes with ordered nanopore array," Journal of Applied Physics, vol. 93, pp. 582-585, Jan 2003.
    [37] Y. Li, C. W. Wang, L. R. Zhao, and W. M. Liu, "Photoluminescence properties of porous anodic aluminium oxide membranes formed in mixture of sulfuric and oxalic acid," Journal of Physics D-Applied Physics, vol. 42, p. 5, Feb 2009.
    [38] G. G. Khan, A. K. Singh, and K. Mandal, "Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: Role of F+ center defects," Journal of Luminescence, vol. 134, pp. 772-777, Feb 2013.
    [39] S. Van Gils, P. Mast, E. Stijns, and H. Terryn, "Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry," Surface & Coatings Technology, vol. 185, pp. 303-310, Jul 2004.
    [40] X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, "Color Fine-Tuning of CNTs@AAO Composite Thin Films via Isotropically Etching Porous AAO Before CNT Growth and Color Modification by Water Infusion," Advanced Materials, vol. 22, pp. 2637-+, Jun 2010.
    [41] X. L. Q. Wang, D. X. Zhang, H. J. Zhang, Y. Ma, and J. Z. Jiang, "Tuning color by pore depth of metal-coated porous alumina," Nanotechnology, vol. 22, p. 6, Jul 2011.
    [42] X. Qin, Y. Yuhua, G. Jianjun, L. Ziyue, and S. Huiyuan, "Influence of Al substrate on the optical properties of porous anodic alumina films," Materials Letters, vol. 74, pp. 137-139, 1 2012.
    [43] Z. Yuhai, S. Sang Jun, and J. Heongkyu, "Anodized aluminum oxide membranes of tunable porosity with platinum nanoscale-coating for photonic application," Current Applied Physics, vol. 12, pp. 1561-1565, Nov. 2012.
    [44] Q. Xu, Y. H. Yang, J. J. Gu, Z. Y. Li, and H. Y. Sun, "Influence of Al substrate on the optical properties of porous anodic alumina films," Materials Letters, vol. 74, pp. 137-139, May 2012.
    [45] H. Wetzel and H. Gerischer, "Surface enhanced raman-scattering from pyridine and halide-ions adsorbed on silver and gold sol particles," Chemical Physics Letters, vol. 76, pp. 460-464, 1980.
    [46] T. H. Wood, M. V. Klein, and D. A. Zwemer, "Enhanced raman-scattering from adsorbates on metal-films in ultrahigh-vacuum," Surface Science, vol. 107, pp. 625-635, 1981.
    [47] H. Yamada, Y. Yamamoto, and N. Tani, "Surface-enhanced raman-scattering (sers) of adsorbed molecules on smooth surfaces of metals and a metal-oxide," Chemical Physics Letters, vol. 86, pp. 397-400, 1982.
    [48] B. Ren, G. Picardi, B. Pettinger, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces," Angewandte Chemie-International Edition, vol. 44, pp. 139-142, 2005.
    [49] I. Pockrand, "RAMAN-SPECTROSCOPY OF PYRIDINE-EXPOSED AG, CU AND AU FILMS IN UHV - A COMPARATIVE-STUDY," Chemical Physics Letters, vol. 85, pp. 37-42, 1982.
    [50] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, et al., "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Advanced Materials, vol. 18, pp. 491-+, Feb 2006.
    [51] S. N. Terekhov, P. Mojzes, S. M. Kachan, N. I. Mukhurov, S. P. Zhvavyi, A. Y. Panarin, et al., "A comparative study of surface-enhanced Raman scattering from silver-coated anodic aluminum oxide and porous silicon," Journal of Raman Spectroscopy, vol. 42, pp. 12-20, Jan 2011.
    [52] P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, "Fabrication of Large-Area Self-Organizing Gold Nanostructures with Sub-10 nm Gaps on a Porous Al2O3 Template for Application as a SERS-Substrate," Journal of Physical Chemistry C, vol. 113, pp. 14165-14171, Aug 2009.
    [53] D. D. Li, L. A. Zhao, C. H. Jiang, and J. G. Lu, "Formation of Anodic Aluminum Oxide with Serrated Nanochannels," Nano Letters, vol. 10, pp. 2766-2771, Aug 2010.
    [54] Y. Li, Z. Y. Ling, X. Hu, Y. S. Liu, and Y. Chang, "Formation and microstructures of unique nanoporous AAO films fabricated by high voltage anodization," Journal of Materials Chemistry, vol. 21, pp. 9661-9666, 2011.
    [55] S. Gardelis, A. G. Nassiopoulou, V. Gianneta, and M. Theodoropoulou, "Photoluminescence-induced oscillations in porous anodic aluminum oxide films grown on Si: Effect of the interface and porosity," Journal of Applied Physics, vol. 107, p. 5, Jun 2010.
    [56] W. J. Stepniowski, M. Norek, M. Michalska-Domanska, A. Bombalska, A. Nowak-Stepniowska, M. Kwasny, et al., "Fabrication of anodic aluminum oxide with incorporated chromate ions," Applied Surface Science, vol. 259, pp. 324-330, Oct 2012.
    [57] S. Y. Li, J. Wang, Y. Li, X. Q. Zhang, G. Wang, and C. W. Wang, "Photo luminescent properties of anodic aluminum oxide films formed in a mixture of malonic and sulfuric acid," Superlattices and Microstructures, vol. 75, pp. 294-302, Nov 2014.
    [58] Y. Tao, F. Xinxin, Z. Qian, C. Yushuang, Y. Changsheng, Z. Weihua, et al., "Fabrication of Ag nanodot array over large area for surface-enhanced Raman scattering using hybrid nanoimprint mold made from AAO template," Applied Physics A. Materials Science & Processing, vol. 117, pp. 909-915, Nov. 2014.
    [59] Y. Wang, Y. Y. Wang, H. L. Wang, M. Cong, W. Q. Xu, and S. P. Xu, "Surface-enhanced Raman scattering on a hierarchical structural Ag nano-crown array in different detection ways," Physical Chemistry Chemical Physics, vol. 17, pp. 1173-1179, 2015.
    [60] X. Yibing, J. Yanyan, Z. Yingzhi, and W. Yong, "SERS activity of self-cleaning silver/titania nanoarray," Applied Surface Science, vol. 313, pp. 549-557, 15 2014.
    [61] D. Z. Shan, L. Q. Huang, X. Li, W. W. Zhang, J. Wang, L. Cheng, et al., "Surface Plasmon Resonance and Interference Coenhanced SERS Substrate of AAO/Al-Based Ag Nanostructure Arrays," Journal of Physical Chemistry C, vol. 118, pp. 23930-23936, Oct 2014.
    [62] A. J. Baca, J. Baca, J. M. Montgomery, L. R. Cambrea, P. Funcheon, L. Johnson, et al., "Mosaic-like Silver Nanobowl Plasmonic Crystals as Highly Active Surface-Enhanced Raman Scattering Substrates," Journal of Physical Chemistry C, vol. 119, pp. 17790-17799, Aug 2015.

    無法下載圖示 校內:2026-12-31公開
    校外:2026-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE