簡易檢索 / 詳目顯示

研究生: 林玉晟
Lin, Yu-Cheng
論文名稱: 探討侷域性表面電漿子應用於氮化銦鎵系列光偵測器之影響
Effect of Localized Surface Plasmon on InGaN-based Photodetectors
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 116
中文關鍵詞: 光偵測器侷域性表面電漿子氮化銦鎵奈米粒子
外文關鍵詞: photodetector, localized surface plasmon, InGaN, nanoparticle, Ag
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電子束蒸鍍機製備銀奈米粒子,並探討不同銀厚度與熱處理條件下,對於表面電漿共振吸收的影響,包含吸收峰值位置與半高寬,也藉由SEM觀察銀粒子表面形貌。表面電漿共振吸收波長位置會受銀奈米粒子之顆粒大小、顆粒形狀以及週遭介電材料所影響。
    表面電漿共振侷限在金屬叢聚(Metal Cluster)或金屬奈米粒子(Nanoparticle)結構附近稱為侷域性表面電漿共振(Localized Surface Plasmon Resonance, LSPR)。入射電磁波激發出侷域性表面電漿子時,會伴隨著兩種現象: (1)表面電漿共振吸收 (2)近場強烈電磁場增強。我們將此特性運用在氮化銦鎵系列光偵測器上,探討是否能利用銀奈米粒子來提升金屬-半導體-金屬(MSM)與金屬-絕緣層-半導體(MIS)光偵測器之光響應值。另外,我們由監控片確定表面電漿共振吸收波長位置有在氮化銦鎵及氮化鎵材料能隙邊緣。
    由實驗結果我們得知將銀粒子埋藏在二氧化矽絕緣層內,並放置於上述兩種光偵測器之金屬與半導體接面間,且二氧化矽層厚度要夠薄,此時方能有效將表面電漿共振吸收耦合給半導體,增加光電流,提升光偵測器效能。另一方面,直接將製備完成之指叉狀電極MSM光偵測器,表面蒸鍍上二氧化矽與銀粒子,此時表面電漿子耦合效率差,故無法有效提升光偵測器之效能。

    This study use E-beam to evaporate Ag films, and to discuss effect of different Ag thickness and annealing process on surface plasmon resonance absorption, which includes absorption peak and full-width half-maximum. We also use SEM to observe the surface morphology of Ag nanoparticles (NPs). Absorption peak of surface plasmon resonance was affected by particle size, shape and surrounding dielectric material.
    While surface plasmon resonance was localized in metal cluster or metal nanoparticle structure, we call it localized surface plasmon resonance (LSPR). When electromagnetic wave to excite localized surface plasmons will accompany with two phenomena: (1) surface plasmon resonance absorption (2) enhance of localized electric field. We use these properties on InGaN series photodetectors (PDs) to discuss if we could promote responsivity of metal-semiconductor-metal (MSM) PD and metal-insulator-semiconductor (MIS) PD. In addition, we use monitoring sample to make sure absorption position of surface plasmon resonance at energy band gap edge of InGaN and GaN materials.
    From the experiment results, embedding silver NPs in active layer of photodetector device will efficiently couple surface plasmon resonance absorption to semiconductor, by doing this could enhance photo current and promote performance of MSM PD and MIS PD, but SiO2 layer can’t be too thick. However, we directly evaporate SiO2 and Ag particles on MSM PD surface, there’s no performance promotion of photodetector because surface plasmon resonance absorption can’t efficiently couple to semiconductor.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 第一章 簡介 1 1-1侷域性表面電漿子介紹 1 1-2氮化鎵為基底材料光偵測器簡介 2 1-3研究動機與論文架構 4 參考文獻 6 第二章 理論背景 9 2-1侷域性表面電漿子原理 9 2-2光偵測器基本理論 11 2-2-1光偵測器運作原理 11 2-2-2暗電流機制 12 2-2-3光偵測器之量子效率與吸收係數 14 2-2-4光偵測器之光響應度與偵測率 15 2-3金屬-半導體接面之蕭特基能障原理 17 2-4金屬-半導體-金屬光偵測器原理 20 2-5金屬-絕緣層-半導體光偵測器原理 21 參考文獻 22 第三章 元件結構與製程 34 3-1銀與介電質介面共振吸收量測之結構與製程 34 3-1-1銀與(氮化鎵/二氧化矽)介面形成表面電漿子之試片結構 34 3-1-2銀與(氮化鎵/二氧化矽)介面形成表面電漿子之製程步驟 35 3-1-3銀與(藍寶石基板/二氧化矽)介面形成表面電漿子之試片結構 36 3-1-4銀與(藍寶石基板/二氧化矽)介面形成表面電漿子之製程步驟 36 3-2金屬-半導體-金屬光偵測器的結構與製程 37 3-2-1金屬-半導體-金屬光偵測器試片結構1 37 3-2-2金屬-半導體-金屬光偵測器試片結構1製程步驟 38 3-2-3金屬-半導體-金屬光偵測器試片結構2 39 3-2-4金屬-半導體-金屬光偵測器試片結構2製程步驟 40 3-3金屬-絕緣層-半導體光偵測器的結構與製程 41 3-3-1金屬-絕緣層-半導體光偵測器試片結構 41 3-3-2金屬-絕緣層-半導體光偵測器製程步驟 42 3-4製程與量測機台簡介 45 第四章 量測結果與討論 59 4-1 銀與介電質介面表面電漿子共振吸收特性 59 4-1-1銀與(氮化鎵/二氧化矽)介面穿透率量測 59 4-1-2銀與(藍寶石基板/二氧化矽)介面穿透率量測 62 4-1-3銀與(氮化鎵/二氧化矽)介面SEM圖 65 4-2金屬-半導體-金屬光偵測器量測結果與討論 66 4-2-1結構A1、B1之金屬-半導體-金屬光偵測器 67 4-2-1.1表面電漿子共振吸收之監控片穿透率量測 67 4-2-1.2暗電流與光電流比較 67 4-2-1.3光響應值比較 68 4-2-2結構A3、B3之金屬-半導體-金屬光偵測器 69 4-2-2.1表面電漿子共振吸收之監控片穿透率量測 69 4-2-2.2暗電流與光電流比較 69 4-2-2.3光響應值比較 70 4-2-3結構D1、D2之金屬-半導體-金屬光偵測器 71 4-2-3.1表面電漿子共振吸收之監控片穿透率量測 71 4-2-3.2暗電流與光電流比較 72 4-2-3.3光響應值比較 72 4-3金屬-絕緣層-半導體光偵測器量測結果與討論 74 4-3-1結構G1、H1之金屬-絕緣層-半導體光偵測器 74 4-3-1.1表面電漿子共振吸收之監控片穿透率量測 75 4-3-1.2暗電流與光電流比較 75 4-3-1.3光響應值比較 76 4-3-2結構G3、H3之金屬-絕緣層-半導體光偵測器 77 4-3-2.1表面電漿子共振吸收之監控片穿透率量測 78 4-3-2.2暗電流與光電流比較 78 4-3-2.3光響應值比較 79 參考文獻 81 第五章 結論與未來展望 113 5-1結論 113 5-2未來方向 114 APPENDIX試片結構圖統整 115

    第一章
    [1] E. Fred Schubert, “Light-Emitting Diodes” Second Edition, CAMBRIDGE, New York, p. 410, 2006.
    [2] A. F. M. Anwar, Shangli Wu, and Richard T. Webster, “Temperature Dependent Transport Properties in GaN, AlxGa1-xN and InxGa1-xN Semiconductors”, IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 48, no. 3, p. 567, 2001.
    [3] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol., vol. 14, p. 27, 1999.
    [4] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films”, Appl. Phys. Lett., vol. 63, p. 2455, 1993.
    [5] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons”, Phys. Reports, vol. 408, p. 131, 2005.
    [6] M. Moskovits, “Surface-enhanced spectroscopy”, Rev. Mod. Phys., vol. 57, p. 783, 1985.
    [7] C. Bohren and D. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley, New York, 1983.
    [8] M. Y. Ng and W. C. Liu, “Surface plasmon effects on the far-field signals of AgOx-type super resolution near-field structure”, Proceedings of 5th Asia-Pacific Conference on Near-Field Optics, Niigata, Japan, 2005.
    [9] Linfang Qiao, Dan Wang, Lijian Zuo, Yuqian Ye, Jun Qian, Hongzheng Chen, Sailing He, “Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres”, applied energy, vol. 88, 2011.
    [10] Cheng Yang, Gang Zhang, Hua Min Li and Won Jong Yoo, “Localized Surface Plasmon Resonances Caused by Ag Nanoparticles on SiN for Solar Cell Applications”, Journal of the Korean Physical Society, vol. 56 , No. 5, p. 1488, 2010.
    [11] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”, Applied Physics Letters, vol. 86, 2005.
    [12] Sang-Kyun Kim, Chang-Hee Cho, Baek-Hyun Kim, Yong-Seok Choi, Seong-Ju Park, Kimoon Lee, and Seongil Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors”, Applied Physics Letters, vol. 94, 2009.
    [13] Xuefeng Gu, Teng Qiu, Wenjun Zhang, Paul K Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance”, Nanoscale Research Letters, 2011.
    [14] Dong-Ming Yeh, Chi-Feng Huang, Cheng-Yen Chen, Yen-Cheng Lu and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode”, Nanotechnology, vol. 19, 2008.
    [15] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett., vol. 60, p. 2917, 1992.
    [16] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications”, Semicond. Sci . Technol., vol. 13, p. 1042, 1998.
    [17] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol. 75, p. 247, 1999.
    [18] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High quality visible-blind algan p–i–n photodiodes”, Appl. Phys. Lett., vol. 74, p. 1171, 1999.
    [19] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., vol. 70, p. 2277, 1997.
    [20] Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth , vol. 170, p. 362, 1997.
    [21] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J.K . Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photon. Technol. Lett., vol. 13, p. 848, 2001.

    第二章
    [1] 吳民耀, 劉威志, “表面電漿子理論與模擬”, 物理雙月刊, 二十八卷二期, 4月 2006.
    [2] 邱國斌、蔡定平, “金屬表面電漿簡介”, 物理雙月刊, 二十八卷二期, 4月 2006.
    [3] 莊淵仁, “可調變之表面電漿強化有機材料自發發光”, 國立成功大學材料科學與工程學系, 碩士論文, 2007.
    [4] C. F. Bohren, D. R. Huffman, “Absorption and scattering of light by small particles”, Wiley Interscience, New York, 1983.
    [5] M. D. Malinsky, K. L. Kelly, G. C. Schatz, G. C. Schatz, R. P. Van Duyne , “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles”, J. Phys. Chem. B, vol. 105, p. 2343, 2001.
    [6] H. Reather, “Surface Plasmons on smooth and Rough Surfaces and on Gratings”, Springer-Verlag, New York, 1986.
    [7] J. P. Kottmann et. al., Phys. Rev. B, vol. 64, p.235, 2001.; K. L. Kelly, et. al., J. Phys. Chem. B, vol. 107, p. 668, 2003.
    [8] Katherine A, Willets and Richard P, Van Duyne, “Exploitation of Localized Surface Plasmon Resonance”, Adv. Mater., Vol. 16, No. 19, 2004.
    [9] E. Hutter and J. H. Fendler, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations”, Physical Review B, vol. 74, p. 155, 2006.
    [10] J. B. Khurgin and G. Sun., “Enhancement of optical properties of nanoscaled objects by metal nanoparticles”, optical Society of American, vol. 26, No. 12, 2009.
    [11] R. T. Hill, J. J. Mock, Y. Urzhumov, D. S. Sebba, S. J. Oldenburg, S. Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging Nanoscale Plasmonic Modes to Achieve Reproducible Enhancement of Light”, Nano. Lett., vol. 10, p. 4150, 2010.
    [12] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells”, nature materials, vol. 3, p. 601, 2004.
    [13] 劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, 2010.
    [14] S. M. Sze, “Semiconductor Device Physics and Technology 2nd Edition”, WILEY, chap. 3, 2001.
    [15] S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, “Evidence For Tunneling in Reverse-Biased III-V Photodetector Diodes”, Appl. Phys. Lett., vol. 36, No. 7, p. 580, 1980.
    [16] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, “In0.53Ga0.47As Photodiode With Dark Current Limited by Generation- Recombination And tunneling”, Appl. Phys. Lett., vol. 37, No. 3, p. 217, 1981.
    [17] S. M. Sze, “Semiconductor Device Physics and Technology 2nd Edition”, WILEY, p. 314, 2001.
    [18] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry”, Appl. Phys. Lett., Vol. 80, No. 3, p. 347, 2002.
    [19] Dieter K. Schroder, “Semiconductor material and device characterization”, A Wiley-Interscience Publication, chap. 3, 1998.
    [20] S. M. Sze, “Semiconductor Device Physics and Technology 2nd Edition”, WILEY, chap. 7.1, 2001.
    [21] D. A. Neamen, “半導體物理與元件(三版)”, 麥格羅希爾出版, chap. 9.1, 2003.
    [22] 陳勝傑, “在非極化A面氮化鎵於藍寶石基板上的蕭特基二極體之光電特性研究”, 國立成功大學光電科學與工程研究所, 碩士論文, 2008.
    [23] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller and S. P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n‐type GaN”, Appl. Phys. Lett., vol. 68, 1996.
    [24] 葉俊麟, “氧化鉿與氧化鋯薄膜應用於氮化鎵光電元件之研究”, 國立成功大學微電子工程研究所, 碩士論文, 2009.
    [25] L. D. Feldheim, C. A. Foss, “Metal nanoparticles: synthesis, characterization, and applications”, Marcel Dekker, New York, 2002.
    [26] S. Link, M. A. El-Sayed, “Steady-state and time-resolved optical properties of metallic nanoparticles: The surface plasmon absorption as an analytical tool to investigate particle properties“, International Reviews in Physical Chemistry, vol. 19, p. 409, 2000.

    第四章
    [1] 洪文祺, “金屬奈米粒子表面電漿效應之研究”, 國立中山大學光電工程研究所, 博士論文, 2008.
    [2] Xia Wu, Jiani Yu, Shenjin Wei, Peng Zhou, Jing Li and Liang-Yao Chen, “Effect of Ag Concentration and Annealing on the Optical Properties of Ag Nanoparticle Composite Films”, Journal of the Korean Physical Society, vol. 49, No. 5, p. 2155, 2006.
    [3] Rong He, Xuefeng Qian, Jie Yin and Zikang Zhu, “Preparation of polychrome silver nanoparticles in different solvents”, J. Mater. Chem., p. 3783, 2002.
    [4] Yu. A. Akimov, K. Ostrikov, E. P. Li, “Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells”, Springer Science, Plasmonics, vol. 4, p. 107, 2009.
    [5] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”, Applied Physics Letters, vol. 86, 2005.
    [6] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells”, Solar Energy Materials & Solar Cells, vol. 61, p.97, 2000.

    下載圖示 校內:2016-08-02公開
    校外:2016-08-02公開
    QR CODE