簡易檢索 / 詳目顯示

研究生: 卜耶薩
Pramudityo, Esar
論文名稱: 幾丁聚醣高分子微針貼片於經皮傳輸生物巨分子藥物之應用
Chitosan Microneedle Patches for Transdermal Delivery of Biomacromolecules
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 73
外文關鍵詞: microneedle, chitosan, transdermal delivery, biomacromolecules
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用高分子微針作為一可自我施行且無痛之生物巨分子藥物輸送方法已廣為人知,其相較於金屬或矽質微針除免除了使用上之安全疑慮亦可減少生醫廢棄物之危害。在本研究中,將以幾丁聚醣高分子做為微針基質,期望開發出一種兼具生物可降解性及藥物或疫苗佐劑功效之生物相容性藥物傳輸裝置。 首先,利用聚二甲基硅氧烷 (polydimethylsiloxane, PDMS) 對金屬微針主結構翻模製造所需之微模具 (micromold),並於常溫常壓之環境下,將濃度 10% (w/w) 且約為中性 (pH = ~6.0) 之幾丁聚醣溶液以離心等溫和的製程,經灌模後製成幾丁聚醣高分子微針。由機械壓縮測試結果繪製施力與微針形變之關係圖,得知若微針的深寬比越小,其機械強度越強。 由體外豬皮穿刺測試結果發現,較低深寬比的微針其穿刺比例高達98.0 ± 3.5%,穿刺深度為150.8 ± 5.5 μm,可成功穿越角質層、到達大量可引發免疫反應的抗原呈現細胞所存在之表皮層。在體外藥物釋放實驗中,由穿刺皮膚六小時後的釋放曲線可知幾丁聚醣微針能夠分別提供小分子和大分子模式藥物 (model drug) 84.1 ± 6.7% 和 79.8 ± 3.2% 的釋放量,其中,藥物釋放比例與微針接觸皮膚表面積和包覆藥物的分子量有直接的關係。 研究中另以溶菌酶 (Lysozyme) 作為生物活性分子之模型,從實驗結果得知經幾丁聚醣高分子微針包覆之溶菌酶,在室溫下保存一個月後仍可兼具活性和穩定性。 總體而言,本研究證實幾丁聚醣微針可溫和地包覆生物大分子,並於刺穿皮膚後逐漸釋放其所包覆之藥物。

    Polymeric microneedles have been known to serve painlessly self-administration of biomacromolecules without leaving biohazardous wastes. The use of chitosan as microneedle matrix, in this study, is expected to provide a biodegradable and biocompatible drug release device that can also act as adjuvant for vaccine encapsulated inside. Chitosan microneedles were fabricated using gentle processes, in which centrifugation in ambient temperature and pressure was applied to cast the 10% (w/w) of chitosan solution (pH = ~6.0) to fill the mold, which was replicated from microneedle master structure using cured PDMS. Mechanical compression test has been done to measure the strength of microneedles by plotting the displacement of needles with the force, where the microneedles with lower aspect ratio (i.e. 2) have the greater mechanical strength. The in vitro porcine skin insertion test has showed the microneedles with lower aspect ratio were able to make 98.0 ± 3.5% insertion rate and 150.8 ± 5.5 μm penetration depth, crossing the epidermis layer where the antigen-presenting cells exist. In vitro drug release profile shows the chitosan microneedles were able to deliver both low and high molecular weight model drugs as much as 84.1 ± 6.7% and 79.8 ± 3.2%, respectively, within 6 hours skin insertion. The drug release rate relied on the contact surface area of microneedle inserted into the skin and on the molecular weight of loaded drugs. Lysozyme, encapsulated in chitosan microneedles as a model of biomacromolecules, was shown to retain its stability after storage for 1 month at room temperature. Overall, this study demonstrates the ability of chitosan microneedles to gently encapsulate biomacromolecules, insert into skin and release the load.

    ABSTRACT i 摘要 iii ACKNOWLEDGEMENT v Table of Contents vii List of Tables xi List of Figures xiii CHAPTER 1 INTRODUCTION 1 1.1. TRANSDERMAL DRUG/VACCINE DELIVERY 1 1.1.1. Skin as a new delivery route 1 1.1.2. Methods of transdermal delivery system 3 1.2. MICRONEEDLES 6 1.2.1. Definition 6 1.2.2. Materials used for fabricating microneedles 8 1.2.3. Vaccine delivery using polymeric microneedles 9 1.2.4. Chitosan, a vaccine adjuvant, as a potential material for transdermal patches 11 1.3. THE OBJECTIVES OF THIS STUDY 12 CHAPTER 2 MATERIALS AND METHODS 15 2.1. MATERIALS 15 2.2. EQUIPMENTS 16 2.3. METHODS 17 2.3.1. Microneedle Fabrication 17 2.3.1.1. Microneedle molding 17 2.3.1.2. Preparation of microneedle matrix solution 19 2.3.1.3. Preparation of microneedles 20 2.3.2. Microneedle Mechanical Test 21 2.3.2.1. Microneedle compression test 21 2.3.2.2. Skin insertion 21 2.3.3. In Vitro Drug Release Study 22 2.3.3.1. Imaging sustained release from microneedle patch 22 2.3.3.2. Quantification of released drug 23 2.3.4. Analysis of Protein Encapsulated in Microneedles 24 2.3.4.1. Stability test 24 2.3.4.2. Lysozyme activity 25 CHAPTER 3 RESULTS AND DISCUSSION 27 3.1. MICRONEEDLE FABRICATION 27 3.1.1. Microneedle PDMS Molding 28 3.1.2. Chitosan Microneedles 28 3.1.2.1. Gentle fabrication process 29 3.1.2.2. The problem faced: void structure in chitosan microneedles and its effect in skin insertion 30 3.1.2.3. The optimum parameters to fabricate the chitosan microneedles 38 3.2. MICRONEEDLE MECHANICAL TEST 39 3.2.1. Compression Force Test 39 3.2.2. Microneedle Insertion into the Skin In Vitro 41 3.2.2.1. Skin insertion method 41 3.2.2.2. The effect of microneedle specification on insertion depth 43 3.3. IN VITRO DRUG RELEASE PROFILE 47 3.3.1. Drug Diffusion Profile within the Skin as a Function of Insertion Time 47 3.3.2. The Release of Low Molecular-Weight Model Drug 49 3.3.3. The Release of High Molecular-Weight Model Drug as a Model for Biomacromolecules or Vaccine 52 3.4. PROTEIN STABILITY AND ACTIVITY AFTER ENCAPSULATION IN CHITOSAN MICRONEEDLES 56 3.4.1. Protein Stability 56 3.4.2. Protein Activity 58 CHAPTER 4 CONCLUSIONS 61 REFERENCES 63 APPENDIX 71

    Arvanitoyannis, I. S., A. Nakayama and S. Aiba (1998), “Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties.” Carbohydrate Polymer 37: 371-382.
    Aranaz, I., M. Mengibar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed and A. Heras (2009), “Functional characterization of chitin and chitosan.” Current Chemical Biology 3: 203-230.
    Bal, S. M., Z. Ding, E. van Riet, W. Jiskoot, and J. A. Bouwstra (2010), “Advances in Transcutaneous Vaccine Delivery: Do all ways lead to Rome?” Journal of Controlled Release 148: 266-282.
    Bal, S. M., A. C. Kruithof, R. Zwier, E. Dietz, J. A. Bouwstra, J. Lademann and M. C. Meinke (2010), “Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo.” Journal of Controlled Release 147: 218-224.
    Brannon-Peppas, L. (1997), “Polymers in Controlled Drug Delivery.” Medical Plastics and Biomaterials 4: 34-44.
    Champion, R. H., J. L. Burton, and F. J. G. Ebling (1992), Rook’s Textbook of Dermatology, 5th ed., Oxford: Blackwell Scientific Publications.
    Chen, X., A. S. Kask, M. L. Crichton, C. McNeilly, S. Yukiko, L. Dong, J. O. Marshak, C. Jarrahian, G. J. P. Fernando, D. Chen, D. M. Koelle and M. A. F. Kendall (2010), “Improved DNA by skin-targeted delivery using dry-coated densely-packed microprojection arrays.” Journal of Controlled Release 148: 327-333.
    Chichkov, B. (2007), “Two-photon polymerization enhances rapid prototyping of medical devices.” SPIE Newsroom. DOI: 10.1117/2.1200704.0705
    Cölfen, H., S. E. Harding, K. M. Vårum and D. J. Winzor (1996), “A study by analytical ultracentrifugation on the interaction between lysozyme and extensively deacetylated chitin (chitosan).” Carbohydrate Polymers 30: 45-53.
    Chu, L. Y. and M. R. Prausnitz (2010), “Separable arrowhead microneedles.” Journal of Controlled Release 149: 242-249.
    Chu, L. Y., S. -O. Choi, and M. R. Prausnitz (2010), “Fabrication of dissolving microneedles for controlled drug encapsulated and delivery: Bubble and pedestal microneedle designs.” Journal of Pharmaceutical Sciences 99 (10): 4228-4238.
    Davis, S. P., M. R. Prausnitz and M. G. Allen (2003), “Fabrication and characterization of laser micromachined hollow microneedles.” TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, 2: 1435-1438.
    Donnelly, R. F., T. R. R. Singh and A. D. Woolfson (2010), “Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety.” Drug Delivery 17(4): 187-207.
    Frank, M., PDMS Mold Preparation Procedure, San Diego State University, California, USA.
    Gardeniers, H. J. G. E., R. Luttge, E. J. W. Berenschot, M. J. de Boer, S. Y. Yeshurun, M. Hefetz, R. van't Oever and A. van den Berg (2003). "Silicon micromachined hollow microneedles for transdermal liquid transport." Journal of Micro Electromechanical System 12(6): 855-862.
    Ghendon, Y., S. Markushin, G. Krivtsov and I. Akopova (2008), “Chitosan as an Adjuvant for Parenterally Administered Inactivated Influenza Vaccines.” Arch Virol 153: 831-837.
    Ghendon, Y., S. Markushin, I. Akopova, I. Koptiaeva and G. Krivtsov (2011). “Chitosan as Adjuvant for Poliovaccine.” Journal of Medical Virology 83: 847-852.
    Gill, H. S. (2007), Coated microneedles and microdermabrasion for transdermal delivery, Georgia Institute of Technology, Georgia, USA.
    Gill, H. S., D. D. Denson, B. A. Burris, M. R. Prausnitz (2008), “Effect of microneedle design on pain in human volunteers.” Clin J Pain 24 (7): 585-594.
    Gupta, J. (2009), Microneedles for transdermal drug delivery in human subjects, Georgia Institute of Technology, Georgia, USA.
    Henry S., D. V. McAllister, M. G. Allen and M. R. Prausnitz (1998), “Microfabricated microneedles: a novel approach to transdermal drug delivery.” Journal of Pharmaceutical Sciences 87(8): 922-925.
    Ito Y., E. Hagiwara, A. Saeki, N. Sugioka and K. Takada (2006), “Feasibility of microneedles for percutaneous absorption of insulin.” Eur J Pharm 29 (1): 82-88.
    Joshi, K. (2008), “Transdermal drug delivery systems and their use of polymers.” San Jose State University, California, USA.
    Karteek, P., M. Sravanthi, A. Ranjith (2010), “Chitosan: A biocompatible polymer for pharmaceutical applications in various dosage forms.” International Journal of Pharmacy and Technology 2 (2): 186-205.
    Kim, Y. -C., F. –S. Quan, R. W. Compans, S. –M. Kang and M. R. Prausnitz (2010), “Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity.” Journal of Controlled Release 142: 187-195.
    Kocherbitov, V., T. Arnebrant, and O. Söderman (2004), “Lysozyme-water interactions studied by sorption calorimetry.” J. Phys. Chem. B 108: 19036-19042.
    Langer, R. (1998), “Drug delivery and targeting.” Nature 392: 5-10.
    Lee, J. W. (2009), Physical enhancement of transdermal drug delivery: Polysaccharide dissolving microneedles and micro thermal skin ablation, Georgia Institute of Technology, Georgia, USA.
    Lee, J. W., J. H. Park and M. R. Prausnitz (2008), “Dissolving microneedles for transdermal drug delivery.” Biomaterials 29: 2113-2124.
    Martanto, W., S. P. Davis, N. R. Holiday, J. Wang, H. S. Gill and M. R. Prausnitz (2004), “Transdermal delivery of insulin using microneedles in vivo.” Pharmaceutical Research 21 (6): 947-952.
    Martanto, W., J. S. Moore, T. Couse, and M. R. Prausnitz (2006), “Mechanism of fluid infusion during microneedle insertion and retraction.” Journal of Controlled Release 112 (3): 357-361.
    Matriano, J. A., M. Cormier, J. Johnson, W. A. Young, M. Buttery, K. Nyam and P. E. Daddona (2002), ‘Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization.” Pharmaceutical Research 19(1):63-70.
    Mikszta, J. A. , J. B. Alarcon, J. M. Brittingham, D. E. Sutter, R. J. Pettis and N. G. Harvey (2002). "Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery." Nature Medicine 8(4): 415-419.
    Mir, V. G., J. Heinämäki, O. Antikainen, O. B. Revoredo, A. I. Colarte, O. M. Nieto, and J. Yliruusi (2008), “Direct compression properties of chitin and chitosan.” European Journal of Pharmaceutics and Biopharmaceutics 69: 964-968.
    Mitragotri, S. (2005), “Immunization without needles.” Nature Reviews Immunology 5: 905-906.
    Miyano, T., Y. Tobinaga, T. Kanno, Y. Matsuzaki, M. Wakui, K. Hanada (2005), “Sugar micro needles as transdermic drug delivery system.” Biomed Microdevices 7 (3): 185-188.
    Molecular Probes (2001), “Enzchek® Lysozyme Assay Kit (E-22013) Product Information.” MP22013: 1-3.
    Narasimhan, B. and N.A. Peppas (1997), “Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier.” J. Pharm. Sci. 86: 297-304.
    Nordtveit, R. S., K. M. Vårum and O. Smidsrød (1994), “Degradation of fully water-soluble, partially N-acetylated chitosan with lysozyme.” Carbohydrate Polymers 23 : 253-266.
    OECD Organisation for Economic Co-Operation and Development – Environment Directorate (2004), “Guidance document for the conduct of skin absorption studies, OECD series on testing and assessment, No.28.” Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Paris, France.
    Palache, A. (2006), “International meetings on pandemic preparedness and control.” Infl Bull ESWI 21:6–7.
    Park, J. H., M. G. Allen and M. R. Prausnitz (2005), “Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery.” Journal of Controlled Release 104: 51-66.
    Park, J. H., M. G. Allen, and M. R. Prausnitz. (2006). "Polymer microneedles for controlled-release drug delivery." Pharm. Res. 23(5): 1008-1018.
    Park, S. –I., M. A. Daeschel and Y. Zhao (2004), “Functional Properties of Antimicrobial Lysozyme-Chitosan Composite Films.” Journal of Food Science 69 (8): 215-221.
    Prausnitz, M. R. (2004), “Microneedles for Transdermal Drug Delivery.” Advanced Drug Delivery Reviews 56: 581-584.
    Prausnitz, M. R. and R. Langer (2008), “Transdermal Drug Delivery.” Nat Biotechnol. 26 (11): 1261-1268.
    Prausnitz, M. R., H. S. Gill and J. H. Park (2008), Modified Release Drug Delivery, 2nd ed., New York: Informa Healthcare.
    Prausnitz, M. R., S. Mitragotri and R. Langer (2004), “Current status and future and future potential of transdermal drug delivery.” Nat Rev Drug Discovery 3 (2): 115-124.
    Raphael, A. P., T. W. Prow, M. L. Crichton, X. Chen, G. J. P. Fernando and M. A. F. Kendall (2010), “Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays.” Small 6 (16): 1785-1793.
    Ratner, B. D., A. S. Hoffman, F. J. Schoen, J. E. Lemons (1996), Biomaterials Science: An Introduction to Materials in Medicine, New York: Academic Press.
    Raval, A., J. Parikh and C. Engineer (2010), “Mechanism of controlled release kinetics from medical devices.” Brazilian Journal of Chemical Engineering 27(2): 211-225.
    Roberts, M. S. and K. A. Walters (2009), Dermal Absorption and Toxicity Assessment, 2nd ed., New York: Informa Healthcare USA, Inc.
    Shah, S.H. and D. Shah (2008), “Transdermal Drug Delivery Technology Revisited: Recent Advances.” Latest Reviews 6 (5) [http://www.pharmainfo.net/ reviews/transdermal-drug-delivery-technology-revisited-recent-advances]
    Steinbchel, A. (2001), Biopolymers vol. 6, Weinheim: Wiley-VCH.
    Stoeber, B. and D. Liepmann (2000). “Fluid injection through out-of-plane microneedles.” Microtechnologies in Medicine and Biology, 1st Annual International Conference, Lyon, France, IEEE: 224-228.
    Stokke, B. T., K. M. Vårum, H. K. Holme, R. J. N. Hjerde, O. Smidsrød (1995), “Sequence specificities for lysozyme depolymerization of partially N-acetylated chitosans." Can. J. Chem. 73: 1972-1981.
    Sullivan, S. P. (2009), Polymer microneedles for transdermal delivery of biopharmaceuticals, Georgia Institute of Technology, Georgia, USA.
    Sullivan, S. P., D. G. Koutsonanos, M. dP. Martin, J. W. Lee, V. Zarnitsyn, S. –O. Choi, N. Murthy, R. W. Compans, I. Skountzou and M. R. Prausnitz (2010), “Dissolving polymer microneedle patches for influenza vaccination.” Nature Medicine 16: 915-920.
    Sullivan, S. P., N. Murthy and M. R. Prausnitz (2008), ”Minimally invasive protein delivery with rapidly dissolving polymer microneedles.” Advanced Materials 20: 933-938.
    Tomihata, K. and Y. Ikada (1997), “In vitro and in vivo degradation of films of chitin and its deacetylated derivatives.” Biomaterials 18: 567-575.
    Walsh, G. (2006), “Biopharmaceutical benchmark 2006.” Nat Biotechnol. 24 (7): 769-776.
    Wedmore, I., J. G. McManus, A. E. Pusateri and J. B. Holcomb (2006), “A special report on the chitosan-based hemostatic dressing: Experience in current combat operations.” Journal of Trauma 60: 655-658.
    Zaharoff, D. A., C. J. Rogers, K. W. Hance, J. Schlom, J. W. Greiner (2007). “Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination.” Vaccine 25 (11): 2085-2094.

    無法下載圖示 校內:2016-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE