| 研究生: |
王炳順 Wang, Bing-Shun |
|---|---|
| 論文名稱: |
以Polypyrrole修飾的碳電極感測半胱胺酸與高半胱胺酸的研究 Study of Sensing Capability of Polypyrrole-Modified Carbon Electrodes on Cysteine and Homocysteine |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 高分子拓印模板 、修飾電極 、聚吡咯 、高半胱胺酸 、半胱胺酸 |
| 外文關鍵詞: | homocysteine, cysteine, polypyrrole modified carbon electrode, molecularly imprinted polymer |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們利用聚吡咯修飾的碳電極針對不同濃度的半胱胺酸進行感測。藉由改變聚合過程中半胱胺酸的摻雜量,觀察聚吡咯修飾的碳電極對半胱胺酸的感測靈敏度、拓印係數與吸附情形的變化。藉由比較0.2 mM的半胱胺酸溶液與背景溶液的循環伏安圖,決定半胱胺酸在聚吡咯修飾電極上的感測電位為0.7 V (vs. Ag/AgCl, 3 M KC1)。當摻雜0.5 mM的半胱胺酸時,聚吡咯修飾電極具有最大的靈敏度,數值為89.80 uA˙cm-2˙mM-1,感測濃度的範圍在0.025 ~ 0.2 mM間。以同樣的電極感測0.15 mM的半胱胺酸溶液時,也可以得到較高的拓印係數,數值為1.27。在相同的感測電位(0.7 V vs. Ag/AgCl, 3 M KC1)下,以同樣摻雜0.5 mM的半胱胺酸所製備的聚吡咯修飾電極,分別感測半胱胺酸與高半胱胺酸溶液,可以得到聚吡咯修飾電極對半胱胺酸的選擇性為1.11。另外,以Langmuir恆溫吸附模式來比較不同摻雜量的聚吡咯修飾電極對半胱胺酸的吸附情形,我們發現當摻雜0.5 mM的半胱胺酸時,聚吡咯修飾電極具有最大的飽和吸附量。
In this study, successful fabrication of the screen-printed carbon electrode electro-deposited with polypyrrole film, abbreviated as PPy-C modified electrode, to detect cysteine with a concentration range from 0.025 mM to 0.2 mM in solution was achieved. Varying amount of cysteine present initially and conjointly with pyrrole during electropolymerization significantly changes the sensitivity, imprinting factor and adsorption capacity of the PPy-C modified electrode. With cyclic voltammogram obtained from 0.2 mM cysteine solution, the sensing potential of cysteine at the PPy-C modified electrode was determined at 0.7 V (vs. Ag/AgCl, 3 M KC1). The PPy-C modified electrode doped with cysteine (0.5 mM initially present) gave a maximum sensitivity as 89.80 uA˙cm-2˙mM-1 and an imprinting factor as high as 1.27 when 0.15 mM cysteine in solution was sensed. Furthermore, the same PPy-C modified electrode at the same sensing potential could be used in detecting mixtures of cysteine and homocysteine, from which the selectivity of cysteine was 1.11. Langmuir isotherm was employed successfully in accounting for the adsorption behavior of cysteine on the PPy-C electrodes. Likewise, the PPy-C modified electrode made from 0.5 mM cysteine initially present in electropolymerization of polypyrrole rendered the maximum saturated adsorption capacity.
Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ. J Mol Recognit. 2006;19:106–180.
Bard AJ, Faulkner LR. Electrochemical methods: Fundamentals and applications, 2nd ed., John Wiley & Sons, Inc.: New York, 2001.
Bard AJ. Integrated chemical systems: A chemical approach to nanotechnology, John Wiley & Sons, Inc.: New York, 1994.
Bald E, Kaniowska E, Chwatko G, Glowocki R. Liquid chromatographic assessment of total and protein-bound homocysteine in human plasma. Talanta. 2000;50:1233–1243.
Banica FG, Fogg AG, Moreira JC, Catalytic cathodic stripping voltammetry at a hanging mercury drop electrode of glutathione in the presence of nickel ion. Analyst. 1994;119:2343–2349.
Brabec V, Mornstein V. Electrochemical behaviour of proteins at graphite electrodes II. Electrooxidation of amino acids Biophys. Chem., 1980;12:159–165.
Butz LW, Du VV. The formation of a homologue of cystine by the decomposition of methionine with sulfuric acid. J Biol Chem. 1932;99:135–142.
Carducci C, Birarelli M, Nola M, Antonozzi I. Automated high-performance liquid chromatographic method for the determination of homocysteine in plasma samples. J Chromatogr A. 1999;846:93–100.
Cheong SH, Rachov A, Park JK, Yano K, Karube I, J Polym Sci Part A: Polym Chem 1998;36:1725–1732.
Deore B, Yakabe H, Shiigi H, Nagaoka T. Enantioselective uptake of amino acids using an electromodulated column packed with carbon fibres modified with overoxidised polypyrrole. Analyst.2002;127:935–939.
Diaz AF, Kanazawa KK, Gardini GP. Electrochemical polymerization of pyrrole
J Chem Soc Chem Commun. 1979;635–636.
Davis DG, Bianco E. An electrochemical study of the oxidation of L-cysteine. J Electroanal Chem. 1966;12:254–260.
Eggli R, Asper R. Electrochemical flow-through detector for the determination of cystine and related compounds. Anal Chim Acta. 1978;101:253–259.
Frantzen F, Faaren AL, Nordhel AK. Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem. 1998;44:311–316.
Gahl WA, Bashan N, Tiete F, Bernardini I, Schulman JD. Science. 1982;217:1263–1265.
Galval VCA, Munoz J, Dominguez C, Alegret S. Chemical sensors, biosensors and thick-film technology. Trends Anal Chem. 1995;14:225–231.
Gilmartin MAT, Hart JP. Sensing with chemically and biologically modified carbon electrodes: A review. Analyst. 1995;120:1029–1045.
Heyrovsky M, Vavricka S. Electrochemical reactivity of homocysteine at mercury electrode as compared with cysteine. Bioelectrochem. Bioenerg. 1999;48:43–51.
Inoue T, Kirchhoff JR. Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinine modified electrode. Anal Chem. 2002;74:1349–1354.
Ivanov AR, Nazimov IV, Baratova L. Determination of biologically active low-molecular-mass thiols in human blood I. Fast qualitative and quantitative, gradient and isocratic reversed-phase high-performance liquid chromatography with photometric and fluorescence detection. J Chromatogr A. 2000;895:157–166.
Jacobsen DW, Gatautis VJ, Green R, Robinson K, Savon SR, Secic M, Ji J, Otto JM, Taylor LM. rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clin Chem. 1994;40:873-881
Jakubke HD, Jeschkert H. Amino acids, peptides and proteins: an
Introduction, Akademie Verlag: Berlin, 1977.
Jandik P, Cheng J, Evrovski J, Ardalovic N. Simultaneous analysis of homocysteine and methionine in plasma. J Chromatogr B. 2001;759:145–151.
Kolthoff IM, Barnum C. The anodic reaction and waves of cysteine at the dropping mercury electrode and at the platinum micro wire electrode. J Am Chem Soc. 1940;62: 3061–3065.
Kuhara T, Ohss M, Ohdoi C, Ishida S. Differential diagnosis of homocystinuria by urease treatment, isotope dilution and gas chromatography–mass spectrometry. J Chromatogr B. 2000;742:59–70.
Kang SH, Kim J-W, Chung DS. Determination of homocysteine and other thiols in human plasma by capillary electrophoresis. J Pharm Biomed Anal. 1997;15:1435–1441.
Kreuzig F, Frank J. Rapid automated determination of D-penicillamine in plasma and urine by ion-exchange high-performance liquid chromatography with electrochemical detection using a gold electrode. J Chromatogr B. 1981;218:615–620.
Lawrence NS, Davis J, Compton RC. Electrochemical detection of thiols in biological media. Talanta. 2001;53:1089–1094.
Lock J, Davis J. The determination of disulphide species within physiological fluids. Trends Anal Chem. 2002;21:807–815.
Ling BL, Baeyens WRG. Capillary zone electrophoresis with ultraviolet and flourescence detection for the analysis of thiols. Application to mixtures and blood. Anal Chim Acta. 1991;255:283–288.
Magera MJ, Lacey JM, Casetta B, RinaldoP. Method for the determination of total
homocysteine in plasma and urine by stableisotope dilution and electrospray tandem
mass spectrometry. Clin Chem. 1999;451517–1522.
McCully KS, Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am. J. Pathol. 1969;56:111–128
Mefford I, Adams RN. Determination of reduced glutathione in guinea pig and rat tissue by HPLC with electrochemical detection. Life Sci. 1978;23:1167–1174.
Moore RR, Banks CE, Compton RG. Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. Analyst. 2004;129:755–758.
Morris VJ, Kirby AR, Gunning AP, Atomic Force Microscopy for Biologists. 1999
Moses PR,Wier L,Murray RW. Chemically modified tin oxide electrode. Anal Lett. 1975;47:1882–1886.
Namera A, Yashiki M, Nishida M, Kojima T. Direct extract derivatization for determination of amino acids in human urine by gas chromatography and mass spectrometry. J Chromatogr B. 2002;776:49–55.
Nekrassova O, Lawrence NS, Compton RG. Analytical determination of homocysteine: a review. Talanta. 2003;60:1085–1095.
Nelson BC, Pfeiffer CM, Sniegoski LT, Satterfield MB. Development and evaluation of an isotope dilution LC/MS method for the determination of total homocysteine in human plasma. Anal Chem. 2003;75:775–784.
O’Brion SD, Kelleher BD, McPartlin J, O’Gorman P, Browne M. Optimization of routine plasma homocysteine monitoring. Blood Coagul Fibrin. 2000;11:367–369.
Okuno H, Kitano T, Yakabe H, Kishimoto M, Deore B. Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids. Anal. Chem. 2002;74:4184–4189.
Owens GS, Lacourse WR. Pulsed electrochemical detection of sulfur-containing compounds following microbore liquid chromatography. Current Sep. 1996;14:82–88.
Pradac J, Koryta J. Electrode processes of the sulfhydryl-disulfide system III. Cysteine at platinum and gold electrodes. J Electroanal Chem. 1968;17:185–189.
Pietzsch J, Julius U, Hanefeld M. Rapid determination of total homocysteine in human plasma by using N(O,S)-ethoxycarbonyl ethyl ester derivatives and gas chromatography-Mass spectrometry. Clin Chem. 1997;43:2001–2004.
Shiigi H, Okamura K, Kijima D, Deore B, SreeU, Nagaoka T. An overoxidized polypyrrole/dodecylsulfonate micelle composite film for amperometric serotonin sensing. J. Electrochem. Soc. 2003;150;H119–H123.
Satterfield MB, Sniegoski LT, Welch MJ, Nelson BC. Comparison of isotope dilution mass spectrometry methods for the determination of total homocysteine in plasma and serum. Anal Chem. 2003;75:4631–4638.
Segal S, Their SO. The Metabolic and Molecular Bases of Inherited Disease, 7th ed., McGraw Hill, New York, 1995. p3581.
Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–246.
Jacobsen DW, Homocysteine and vitamins in cardiovascular disease. Clin. Chem. 1998;44:1833-1843
Seymour EH, Wilkins SJ, Lawrence NS, Compton RG. Electrochemical detection of glutathione: An electrochemically initiated reaction pathway. Anal. Lett. 2002;35:1387–1399.
Shaidarova LG, Ziganshina SA, Budnikov G.K. J Anal Chem. 2003;58:577–582.
Shinohara Y, Hasegawa H, Tagoku K, Hashimoto T. Simultaneous determination of methionine and total homocysteine in human plasma by gas chromatography-ass spectrometry. J Chromatogr B. 2001;758:283–288.
Spãtaru N, Sarada BV, Popa E, Tryk DA, Fujishima A. Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal Chem. 2001;73:514–519.
Stankovich MT, Bard AJ. The electrochemistry of proteins and related substances I. Cystine and cysteine at the mercury electrode. J Electroanal Chem. 1977;75:487–505.
Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: Methods and clinical applications. Clin Chem. 1993;9:1764–1779.
Ueland PM, Mansoor MA, Guttormsen AB, Müller F, Aukrust P, Refsum H, Svardal AM. Reduced, Oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status-A possible element of the extracellular antioxidant defense system. J Nutr. 1996;126:1281–1284.
Xu H, Zhang W, Zhu W, Wang D, Ye J, Yamamoto K, Jin L. Simultaneous determination of total homocysteine, cysteine and methionine in hypothyroid patients’ plasma by liquid chromatography using platinum/poly(methyl violet) modified electrode. Anal Chim Acta. 2005;545:182–188.
Zhloba AA, Blashko EL. Liquid chromatographic determination of total homocysteine in blood plasma with photometric detection. J Chromatogr B. 2004;800:275–280.
Zoski CG. Handbook of Electrochemistry, Elsevier, 2007
趙文元、王亦軍, ”功能高分子材料化學” ,化學工業出版社 (1996)
林俊毅, ”去氧核醣核酸在胺基矽烷自組裝膜上的吸附行為” ,國立成功大學化學工程研究所碩士論文 (2004)
邱顯裕, ”睪酮分子模版的吸附性質與電化學感測特性之研究” ,國立成功大學化學工程研究所碩士論文 (2006)
連加雯, ”網版印刷碳電極的活化及其電分析化學的應用” ,國立中興大學化學工程研究所碩士論文 (2006)
葉書瑄, ”過氧化聚吡咯修飾電極對酪胺酸感測特性之研究” ,國立成功大學化學工程研究所碩士論文 (2007)