| 研究生: |
羅素米 Modaberi, Matin Roshanzamir |
|---|---|
| 論文名稱: |
利用混合金屬有機前驅物合成鎳摻雜氧化鋅半導體之奈米結構並作氣體感測之應用 Synthesis of Nanostructured Ni-doped ZnO Semiconductors using Hybrid Metal Organic Precursors for Gas Sensing |
| 指導教授: |
劉全璞
liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 外文關鍵詞: | ZnO, semiconductor, gas sensor |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The increasing concerns of industrial safety, chemical control and environmental pollution are spurring demand for high performance gas sensors. Growing use of gas sensors is making gas sensors on demand. After decades of research and development activities, semiconductorbased gas sensors are now used in a variety of applications. However, challenges still remain in the area of sensitivity, selectivity, response-recovery speeds and power consumption.
Therefore, improvement of metal oxide gas sensors by the incorporation of different technology is important. Various types of gas sensors have been developed based on different signals originated from gas interactions with either sensing materials or probing sources.
Among them, chemiresistive sensors present unique advantages due to their simple implementation and low manufacturing cost. Combined with good sensitivity, selectivity, and reliability for real-time monitoring, semiconducting metal oxides (SMOs) represent the most popular materials to operate at high temperatures.
Metal-Organic Precursors (MOP) are often volatile enough to be useful as precursors of the metals in vapor phase deposition process e.g. chemical vapor deposition (CVD). Metal-Organic Precursor materials have been the focus in all researches for their application as molecular storage, molecular sensing, catalyst asymmetric synthesis and host materials. These types of martials represent a promising new class of crystalline solids because they exhibit large pore volume, high surface area, permanent porosity, high thermal stability, feature open channels with tunable dimensions and topology.
In this study we investigated the design synthesis and structures of a new family of MOPs through their hybrid-bimetal to expand our knowledge about heterostructures of MOPs. The main objective of this study is synthesis and characterization of a series of hybrid transition metal complexes as single MOP in order to enhance gas sensing and optical properties of nanocrystalline derived from ZnO thin films via hydrothermal techniques. The morphology, microstructure, surface chemistry and photoluminescence properties of the as-grown Ni-doped ZnO nanorods (NRs) are extensively examined. Optical and photocatalytic results reveal that the photodegradation of methyl orange is facilitated with Cu doping into ZnO NRs. This result may facilitate the use of transition-metal ion-doped ZnO in other photo conversion, such as ZnO based dye-synthesized solar cells and magnetism-assisted photocatalytic system.
Furthermore, for Ni- doped ZnO NRs the gas sensing results are discussed in terms of doping concentration, operating temperature, gas type, gas concentrations and relative humidity. The gas sensor performance of Ni doped ZnO thin film was investigated at different operating temperatures. for various reducing organic gases including CH3OH, C2H5OH and inorganic gases including H2S and CH4. The enhancement of gas sensing response is attributed to increasing the number of active sites for adsorption of oxygen and target gases on the surface through incorporation of Ni3+ over Ni2+ ions. The Ni doped ZnO NRs surface study results show at room temperature, the sensing mechanism is related to the formation of a 7 nm-thick ZnS layer over the NRs through reactions between H2S and adsorbed oxygen. Moderate amount of Humidity about 52%, exhibit the highest response to gas sensing and after that decreasing trend with increasing relative humidity. Adsorption and desorption of water molecule with reducing gas at room temperature has been investigated, however it need further studies.
[1] P. G. Romero, Adv. Mater., 13, 2001, 163-174.
[2] R. Rooydell, Doctor of Philosophy thesis, Department of Material science and engineering, National Cheng Kung University, 2017.
[3]-R.P. Feynman, J. Microelec.,1, 1992, 60-66.
[4]-H. Brune, m giovannini, K. B. Bromann, K. Kern, Nature., 394, 1998, 451-453.
[5]-E. Roduner, size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 2006, 583-592.
[6]- H. Kwang, L. Hyungwoo, J. Jikang, L. dong jin, P. Yongju, L. Changhee, L. Byung Yang, H. Seunghun, Nano Scale Lett., 10, 133, 2015, 1-7.
[7] X. J. Zhao, W.W. Shan, H. He, Xinlian Xue, Z. X. Guoc, S. F. Li, Phy. Chem. Chem. Phy., 19, 2017, 117864-7870.
[8] J. Wu X.Caoc, Electrochem. Acta., 249, 2017, 646-656.
[9] J. M. Yang, H. Yu, B. Xiao, Z. Li, M. Zhang, Russia J. Phy. Chem., 91, 2017, 1214-1220.
[10] B. W Mwakikunga, PhD Thesis, University of the Witwatersrand Johannesburg, 2009.
[11] S. Kuriakose, B. Satpatib and S. Mohapatra, Phys. Chem. Chem. Phys.,16, 2014, 12741-12749.
[12] Rossler, U., ed. (1999). Landolt-Bornstein, New Series, Group III. Vol. 17B, 22,41B. Springer, Heidelberg.
[13] M.A. Carpenter, S. Mathur, A. Kolmakov, Metal oxide nanomaterials for chemical 131 sensors, Chapter 2 pp 37-38, Springer (2013), ISBN: 978-1-4614-5394-9.
[14] Reynolds D C, Look D C and Jogai B 1996 Solid State Commun., 99, 1996, 873-875.
[15] T.B. Hur, G.S. Jeen, Y.H. Hwang, H.K. Kim, J. Appl. Phys., 94, 2003, 5787.
[16] R. Kumar, O. A. Dossary. G. Kumar, A. Umar, Nano-Micro Lett., 7(2), 2015, 97-120.
[17] K. Raja, P.S. Ramesh, D. Geetha, Spectrochimica Acta Part A., 120, 2014, 19-24.
[18] W. J. Liu, X. D. Tang, Z. Tang,2 W. Bai, and N. Y. Tang, Adv. Con. Matt. Phys., 424398, 2013, 6.
[19] N. U. Rehman, M Mehmood, F. Ali, M. A. Rasheed, M. Younas, F. C.C. Ling, S. M. Ali, Chem. Phys. Lett., 615, 2014, 35-43.
[20] B. Pandey a, S. Ghosh, P. Srivastava, D. Kabiraj, T. Shripati, N. P. Lalla, Physica, E 41, ,2009, 1164-1168.
[21] M. Sh. Abdel-wahab, A. Jilani, I.S. Yahia, A. A. Al-Ghamdi, Superlattices and Microstructures, 94, 2016, 108-118.
[22] Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, K. Ibrahim, Solid State Commun., 135, 2005, 430-433.
[23] G. Peia, C. Xia, S. Cao, J. Zhang, F. Wu, Jun Xu, J. Magn. Magn. Mater., 302, 2006, 340- 342.
[24] S. Kumar, P. Vats, S. Gautam, V.P. Gupta, K.D. Verma, K.H. Chae, M. Hashim, H.K. Choi, Mater. Res. Bull., 59, 2014, 377-381.
[25] R. Elilarassi, G. Chandrasekaran, American J. Mater. Sci., 2(1), 2012, 46-50.
[26] S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan, Chem. Phys. Lett., 525-526, 2012, 72-76.
[27] V.V. Ganbavle, S.I. Inamdar, G.L. Agawane, J.H. Kim, K.Y. Rajpure, J. Chem. Eng., 286, 2016, 36-47.
[28] A.A. Gadalla, I. Abood and & M.M. Elokr, Impact Journals, 4, 2016, 5-16.
[29] K. Raja, P.S. Ramesh, D. Geetha, Spectrochimica Acta Part A., 120, 2014, 19-24.
[30] M. E. Hilo, A. A. Dakhel, A.Y.A. Mohamed, J. Magn. Magn. Mater., 321, 2009, 2279- 2283.
[31] A. A. M. Farag, M. Cavas¸ F. Yakuphanoglu, F. M. Amanullah, J. Alloys Compd., 509, 2011, 7900-7908.
[32] A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi, Appl. Surf. Sci., 280, 2013, 598-604.
[33] B. Singh, A. Kaushal, I. Bdikin, K. Venkata Saravanan, J.M.F. Ferreira, Mater. Res. Bull., 70, 2015, 430-435.
[34] X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, and W. Shi, Appl. Phys. Lett., 88, 2006, 062508.
[35] W. Yu, L. H. Yang, X. Y. Teng, J. C. Zhang, Z. C. Zhang, L. Zhang, and G. S. Fu, J. Appl. Phys., 103, 2008, 093901.
[36] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Physica E, 10, 2001, 260-264.
[37] X. Wang, L. Zhu, L. Zhang, J. Jiang, Z. Yang, Z. Ye, B. He, J. Alloys Compd., 509, 2011, 3282-3285.
[38] M. Xu, Q. Li, Y. Ma, H. Fan, Sens. Actuators B, 199, 2014, 403-409.
[39] R. Saravanan, K. Santhi, N. Sivakumar, V. Narayanan, A. Stephen, Mater. Charact., 67, 2012, 10-16.
[40] X. Wang, M. Zhao, F. Liu, J. Jia, X. Li, L. Cao, Ceram. Int., 39, 2013, 2883-2887.
[41] Kenigsberg N L and Chernec A N 1968 Russ. Phys. Stat. Sol., 9, 2834.
[42] Kenigsberg N L, Chernetc A N, Kosmacheva T S and Grinchenko A 1970 Russ. Phys. Stat. Sol., 12 1861.
[43] Chernetc A N and Kenigsberg N L 1973 Thin Solid Films, 18, 1973, 247-255.
[44] D.J. Qiu, H.Z. Wu, A.M. Feng, Y.F. Lao, N.B. Chen, T.N. Xu, Appl. Surf. Sci., 222, 2004, 263-268.
[45] Z. ShaoMin, Y. HongLei, L. LiSheng, C. XiLiang, L. ShiYun, H. YaoMing, Y. RuiJian, L. Ning, Nanoscale Res Lett., 5, 2010, 1284-1288.
[46] B. Zhang, X. T. Zhang, H. C. Gong, Z. S. Wu, S. M. Zhou, Z. L. Du, Phys. Lett A., 372, 2008, 2300-2303.
[47] H. Ahn, Y. Wang, S. H. Jee, M. Park, Y. S. Yoon, D.-J. Kim, Chem. Phys. Lett., 511 ,2011, 331-335.
[48] Z. Bai, C. Xie, M. Hu, S. Zhang, Physica E, 41, 2008, 235-239.
[49] Z. Wei1, X. Wu, L. Zhang, W. Feng and H. Yang, Adv. Mater, 785-786, 2013, 582-585.
[50] T. Al-Harbi, J. Alloys Compd., 509, 2011, 387-390.
[51] W. G. Chen, T. Y. Gao, H. L. Gan, L. N. Xu & L. F. Jin, Mater. Technol., 30, 2015, 356-361.
[52] J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, Y. Zhang, Mater. Res. Bull., 46, 2011, 1207-1210.
[53] L. Yanmei, W. Tao, S. Xia, F. Qingqing, L. Qingrong, S. Xueping, S. Zaoqi, Appl. Surf. Sci., 257, 2011, 6540-6545.
[54] C. Cheng, G. Xu, H. Zhang, Y. Luo, Mat. Lett., 62, 2008, 1617-1620.
[55] G. Srinet, R. Kumar, and V. Sajal, J. Appl. Phys., 114, 2013, 033912.
[56] W. F. Egelhoff, Jr., Surf. Sci. Rep., 6, 1987, 253-415.
[57] B.P. Payne, M.C. Biesinger, N.S. McIntyre, J. Electron Spectrosc. Relat. Phenom., 175, 2009, 55-65.
[58] K. S. KIM and R. E. DAVIS, J. Electron Spectrosc. Relat. Phenom., 1, 1972, 251.
[59] S. Kant and A. Kumar, Adv. Mat. Lett., 3(4), 2012, 350-354.
[60] Y. Liu, H. Liu, Z. Chen, N. Kadasala, C. Mao, Y. Wang,Y. Zhang, H. Liu, Y. Liu, J. Yang, Y. Yan, J. Alloys Compd., 604, 2014, 281-285.
[61] L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen and C. Y. Su, Nature Commu., 4:1774, 2013, 1-9.
[62] R. G. Miller, S. Narayanaswamy, J. L. Tallon and S. Brooker, New J. Chem., 38, 2014, 1932.
[63] S. Schlamp, K. Dankhoff and B. Weber, New J. Chem., 38, 2014, 1965.
[64] J. AGUILO, A. Naeimi, R. Bofill, H. M. Bunz, A. Llobet, L, Escribe, X. Sala and M. Albrecht, New J. Chem., 38, 2014, 1980.
[65] L. Xu, J. Pan, Dai, Z, Cao, H. Hang, X, Li and Y. Yan, RSC Advances., 2, 2012, 5571- 5579.
[66] M. A. Subhan, T. Ahmed, R. Awal, R. Makioka, H. Nakata, T. T. Pakkanen, M. Suvanto, B. M. Kim, J. Lumin., 146, 2014, 123-127.
[67] A. Ahmed, M. Forster, R. Clowes, P. Myers and H.Zhang, Chem Commun., 50, 2014, 14314.
[68] Y. Ni, Y. Zhu and X. M. Dalton Trans, 40, 2011, 3689.
[69] P. Sundberg and M. Karppinen, Beilstein J. Nanotech., 5, 2014, 1104-1136.
[70] D. Wang and Y. Li, Adv. Mater., 23, 2011, 1044-1060.
[71] O¨. Metin, L. T. Yıldırım, S. O¨ zkar, Inorg. Chem. Comm., 10, 2007, 1121-1123.
[72] Y. Moreno, R. Arrue, R. Saavedra, J.Y. Pivan, O. Pena, T. Roisnell J. Chil. Chem. Soc., 58, 2013, 4.
[73] M. Shahid, M. Hamid, M. Mazhar, M. A. Malik, J. Raftery, Acta Crystallogr, 66, 2010, 949.
[74] M. Seco, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain, 66, 1989.
[75] D. Ž. Veljković,a V. B. Medaković,a J. M. Andrićb and S. D. Zarić, Cryst Eng. Comm., 16, 2014, 10089-10096.
[76] G. R. Desiraju, Acc. Chem. Res., 35, 2002, 565-573.
[77] K. Wetchaku, T. Samejai, N. Tamaekong, C. Lieuhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B., 160, 2011, 580-591.
[78] S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef and M. C. Kanan, Sensors, 9, 2009, 8158-8196.
[79] F.H. Ramirez, J. D. Prades and J. R. Morante, Sens. Actuators, 21, 2009, 219-227.
[80] G. Korotcenkov, Mater. Sci. Eng. B 139, 2007, 1-23.
[81] Yue Hou, Doctor of Philosophy thesis in Engineering, The University of Toledo, 2014.
[82] M. Gautam and A. H. Jayatissa, J. Appl. Phys., 112, 2012, 114326.
[83] M. Gautam, A. H. Jayatissa, Mater. Sci. Eng C, 31, 2011, 1405-1411.
[84] A. H. Jayatissa, P. Samarasekara, and G. Kun, hys. Status Solidi A, 206, 2009, 332-337.
[85] Kun Guo, Ahalapitiya H. Jayatissa, Mater. Sci. Eng C, 28, 2008, 1556-1559.
[86] T. Seiyama and A. Kato, K. Fujiishi, M. Nagatani, Anal. Chem., 34, 1962, 1502.
[87] P. Rai, S. M. Majhi, Y. T. Yub and J. H. Lee, RSC Adv., 5, 2015, 76229.
[88] A. Hulanicki, S.Glab, F. Ingman, Pure & Appl. Chem., 63, 1991, 1247.
[89] V. Galstyan, E. Comini, G. Faglia and G. Sberveglieri, Sensors, 13, 2013, 4813-14838.
[90] C. S. Rout, M. Hegde, C.N.R. Rao, Sens. Actuators B, 128, 2008, 488-493.
[91] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, and C. Liu, J. Phys. Chem. C, 111, 2007, 1900-1903.
[92] J. Liu, X. Huang, G. Ye, W. Liu, Z. Jiao, W. Ghao, Z. Zhou, and Z. Yu, Sensors, 3, 2003, 110-118.
[93] Z. Sun, H. Yuan, Z. Liu, B. Han, and X. Zhang, Adv. Mater., 17, 2005, 2993-2997.
[94] L. Mai, L. Xu, Q. Gao, C. Han, B. Hu, and Y. Pi, Nano Lett., 10, 2010, 2604-2608.
[95] K. Ren, Y. X. Gan, T. J. Young, Z. M. Moutassem, L. Zhang, Composites: Part B, 52, 2013, 292-302.
[96] J. Nisar, Z. Topalian, A. D. Sarkar, L. Österlund, and R. Ahuja, ACS Appl. Mater.Interfaces, 5, 2013, 8516-8522.
[97] M. H. Darvishnejad, A. A. Firooz, J. Beheshtian and A. A. Khodadadib, RSC Adv., 6, 2016, 7838.
[98] C. Hagleitner, Student Member, IEEE, D. Lange, Student Member, IEEE, A. Hierlemann, O. Brand, Associate Member, IEEE, and H. Baltes, Senior Member, IEEE, IEEE J. Solid-State Circuits, 37, 2002, 1867.
[99] S. Kulinyi, D. Brandsza´jsz, H. Amine, M. A´ da´m, P. Fu¨rjes, I. B´arsony, Cs. D¨ucs˝o, Sens. Actuators B, 111-112, 2005, 286-292.
[100] A. H. Jayatissa, A. Dadi, T. Aoki, Appl. Surf. Sci., 244, 2005, 453-457.
[101] A. H. Jayatissa, S. T. Cheng, T. Gupta, Mater. Sci. Eng B., 109, 2004, 269-275.
[102] G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, Sensors, 10, 2010, 5469-5502;
[103] N. Barsan, U. Weimar, J. Electroceram, 7, 2001, 143-167.
[104] N. Yamazoe, Y. Kurokawa and T. Seiyama, Sens. Actuators B, 4, 1983, 283-289.
[105] G. K. Mani and J. B. B. Rayappan, RSC Adv., 5, 2015, 54952.
[106] S. Choopun, N. Hongsith and E. Wongrat, (Handbook) Metal-Oxide Nanowires for Gas Sensors.
[107] D. Dey, S. Ghosh, D. Chopra, J. Chem. Crystallogr, 44, 2014, 131.
[108] R. C. Johnston, P. H. Yeon Cheong, Org. Biomol. Chem.,11, 2013, 5057.
[109] D. G. Tuck, Progr. Inorg. Chem., 9, 1968, 161
[110] G. R. Desiraju, Acc. Chem. Res., 29, 1996, 441.
[111] T. Steiner, Angew. Chem. Int. Ed., 41, 2002, 48.
[112] O. D. Bonner, J. D. Curry, Infrared Phys., 10, 1970, 91.
[113] S. F. Tayyari, F. Milani‐nejad, Spectrochim. Acta A., 56, 2000, 2679.
[114] S. Brahma, S. A. Shivashankar, J. Mol. Struct., 41, 2015, 1101.
[115] A. M. A. Bennett, G. A. Foulds, D. A. Thornton, Polyhedron, 8, 1989, 2305-2311.
[116] K. Nakamoto, P. J. McCarthy, A. E. Martell, J. Am. Chem. Soc., 83, 1961, 1272.
[117] I. D. Acosta, J. Baker, W. Cordes, P. Pulay, J. Phys, Chem. A, 105, 2001, 238.
[118] A. J. Bridgeman, Dalton Trans., 2008, 1989-1992.
[119] A. Lennartson, L. U. Christensen, C. J. McKenzie, U. G. Nielsen, Inorg. Chem., 53, 2014,399.
[120] J. J. Wu and S. C. Liu, Appl. Phys. Lett., 81, 2002, 1312.
[121] S. Kumar, P. Vats, S. Gautam, V.P. Gupta, K.D. Verma, K.H. Chae, M. Hashim, H.K. Choi, Mater. Res. Bull., 59, 2014, 377-381.
[122] B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci., 356, 2015, 804-811.
[123] W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, Appl. Phys. Lett., 86, 2005, 191911 (1-3).
[124] C. V. Manzano, D. Alegre, O. Caballero-Calero, B. Alén, and M. S. Martín-González,J. Appl. Phys., 110, 2011, 043538 (1-8).
[125] J. Iqbal, B. Wang, X. Liu, D. Yu, B. He and R. Yu, New J. Phys., 11, 2009, 1-12.
[126] S. Brahma, J. Khatei, S. Sunkara, K. Y. Lo and S. A. Shivashankar, J. Phys. D: Appl. Phys., 48, 2015, 225305 (12pp).
[127] L. S. Vlasenko and G. D. Watkins, Phys. Rev. B., 71, 2005, 125210 (1-6).
[128] Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu, Z. Dai, W. Cai, Sens. Actuators B, 228, 2016, 74-84.
[129] N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, Appl. Surf. Sci., 270, 2013, 480- 485.
[130] Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao, W. Liu, Y. Fu, J. Hazard. Mater., 300, 2015, 167-174.
[131] L. Geng, X. Huang, Y. Zhao, P. Li, S. Wang, S. Zhang, S. Wu, Solid-State Electronics, 50, 2006, 723-726.
[132] G. Cui, M. Zhang and G. Zou, Science Report, 3, 2013, 1250 (1-8).
[133] V. D. Kapse, S.A. Ghosh, G.N. Chaudhari, F.C. Raghuwanshi, D.D. Gulwade, Vacuum, 83, 2009, 346-352.
[134] L. Geng, Synthetic Metals, 160, 2010, 1708-1711.
[135] Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao,W. Liu, Y. Fu, J. Hazard. Mater., 300, 2015, 167-174.
[136] L. Wang, Y. Kang, Y. Wang, B. Zhu, S. Zhang, W. Huang, S. Wang, Mater. Sci. Eng. C, 32, 2012, 2079-2085.
[137] J. Kim and K. Yong, J. Phys. Chem. C., 115, 2011, 7218-7224.
[138] M. Zhao, X. Wang, L. Ning, J. Jia, X. Li, L. Cao, Sens. Actuators B, 156, 2011, 588-592.
[139] N. M. Vuong, N. D. Chinh, B. T. Huy and Y. I. Lee, Scientific Reports, 6, 2016, 26736 (1-13).
[140] G. Qi, L. Zhang, and Z. Yuan, Phys. Chem. Chem. Phys., 16, 2014, 13434-13439.
[141] B. P. Dhonge, S. S. Ray and B. Mwakikunga, RSC Adv., 7, 2017, 21703-21712.
[142] P. K. Kannana, R. Saraswathia, J. B. B. Rayappan, Sens. Actuators A., 164, 2010, 8-14.
[143] B.C. Yadav, R. Srivastava, C.D. Dwivedi, Philos. Mag., 88, 2008, 1113-1124.
[144] M. R. Modaberi, S. Brahma, R. Rooydell, R. C. Wang, C. P. Liu, Appl. Organomet. Chem., 3746, 2017, 1-12.