簡易檢索 / 詳目顯示

研究生: 葉銘議
Ye, Ming-Yi
論文名稱: 應用具籠型支撐座之擠壓油膜軸承於齒輪轉子系統之動態分析
Dynamic Analysis of a Geared Rotor System with Squeeze Film Bearing and Squirrel Cage Supported Structure
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 53
中文關鍵詞: 有限元素法擠壓油膜軸承齒輪轉子軸承系統
外文關鍵詞: Finite Element Method, squeeze film bearing, Geared Rotor-Bearing System
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用有限元素法對具有籠型支撐座之擠壓油膜軸承應用於齒輪轉子軸承系統的動態行為進行分析。系統的轉軸以Timoshenko樑模型建模,並考慮了轉軸的旋轉慣性和剪應變效應。軸承部分則使用具籠型支撐座的擠壓油膜軸承進行模擬。轉盤被假設為剛體,並考慮了其陀螺效應。齒輪對則被視為由線性彈簧和阻尼器連接的兩個剛性轉盤來模擬。本研究探討了軸承潤滑油黏度、軸承徑向間隙、軸承長度、軸承直徑和籠型支撐座對系統自然頻率和穩態響應的影響。數值結果顯示,隨著潤滑油黏度的增加,系統的穩態響應下降。隨著軸承長度或軸承直徑的增加,軸承勁度和阻尼係數也會增加,進而使系統的穩態響應下降。增加籠型支撐座的勁度係數會提高系統的臨界轉速,同時降低系統的共振穩態響應。

    In this thesis, dynamic behavior of a geared rotor-bearing system with squeeze film bearing and squirrel cage supported structure is analyzed by the finite element method Rotating shafts of the system are modeled as Timoshenko beam, which includes the effects of rotary inertia and shear deformation. Bearings are modeled as squeeze film bearing and squirrel cage supported structure. Disk is considered to be rigid with its mass eccentricity and gyroscopic effect taken into account. The gear mesh is modeled as a pair of rigid disks connected by a spring-damper set along the pressure line. In this thesis, we discuss effects of parameters such as viscosity of bearing lubricant, radial clearance of bearing, bearing length, bearing diameter, and squirrel cage supported structure on natural frequency and steady-state response of the system. Numerical results of this research show that, as the lubricant viscosity increases, the steady-state response of the system decreases. With the increase in bearing length or bearing diameter, the bearing stiffness and damping coefficient also increase, leading to a reduction in the system's steady-state response. Increasing the stiffness coefficient of the squirrel cage support will raise the critical speed of the system and simultaneously reduce the resonance steady-state response.

    摘要ii 致謝ix 表目錄xiii 圖目錄xiv 符號說明xvi 第一章 緒論1 1-1前言1 1-2研究動機與目的1 1-3文獻回顧2 1-4本文研究6 第二章 系統運動方程式推導7 2-1座標系統7 2-2運動方程式7 2-2-1轉盤7 2-2-2轉軸9 2-2-3軸承12 2-2-4齒輪嚙合15 2-2-5系統運動方程式18 2-3動態特性分析18 2-3-1旋振速率分析18 2-3-2穩態響應分析19 第三章 數值模擬結果與討論21 3-1程式驗證21 3-2收斂性分析22 3-3系統之旋振速率圖及穩態響應22 3-4軸承潤滑油黏度之影響22 3-5軸承徑向間隙之影響23 3-6軸承長度之影響23 3-7軸承直徑之影響24 3-8軸承籠型支撐座之影響24 第四章 結論26 參考文獻27 附錄一32 附錄二33  表3.1雙轉盤轉子軸承系統的各項數據39 表3.2雙轉盤轉子軸承系統的臨界轉速(rpm)40 表3.3油膜軸承轉子系統之各項數據40 表3.4油膜軸承轉子系統之轉軸數據[9]41 表3.5具籠型支撐座之擠壓油膜軸承應用於齒輪轉子系統的各項數據42 表3.6系統自然頻率之收斂性分析43 表3.7具籠型支撐座之擠壓油膜軸承應用於齒輪轉子系統的臨界轉速43 圖2.1齒輪轉子軸承系統44 圖2.2轉子軸承系統座標圖44 圖2.3轉軸單元及節點自由度45 圖2.4具籠型支撐座之擠壓油膜軸承之示意圖[25]45 圖2.5籠型支撐座之實體圖[26]46 圖2.6具籠型支撐座之擠壓油膜軸承構造圖46 圖2.7齒輪對嚙合模型圖47 圖3.1雙轉盤轉子系統模型47 圖3.2雙轉盤轉子系統之旋振速率48 圖3.3軸承勁度係數與轉速之關係48 圖3.4軸承阻尼係數與轉速之關係49 圖3.5轉速與旋振速率的對應圖49 圖3.6具籠型支撐座之擠壓油膜軸承應用於齒輪轉子系統的旋振速率50 圖3.7具籠型支撐座之擠壓油膜軸承應用於齒輪轉子系統的穩態響應50 圖3.8不同潤滑油黏度對齒輪轉子軸承系統穩態響應的影響51 圖3.9不同徑向間隙對齒輪轉子軸承系統穩態響應的影響51 圖3.10不同軸承長度對齒輪轉子軸承系統穩態響應的影響52 圖3.11不同軸承直徑對齒輪轉子軸承系統穩態響應的影響52 圖3.12不同籠型支撐座勁度對齒輪轉子軸承系統穩態響應的影響53

    [1] Ruhl, R. L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor System,” ASME, Journal of Engineering for Industry, Vol. 94, pp. 126-132, 1972.
    [2] Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME, Journal of Engineering for Industry, Vol. 98, pp. 593-600, 1976.
    [3] Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME, Journal of Mechanical Design, Vol. 102, pp. 793-803, 1980.
    [4] Gardner, M., Myars, C., Savage, M., and Taylor, C., “Analysis of Limit-Cycle Response in Fluid-Film Journal Bearings Using the Method of Multiple Scales,” The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 38, pp. 27-45, 1985.
    [5] Lund, J. W., and Saibel, E., “Oil Whirl Orbits of a Rotor in Sleeve Bearing,” ASME, Journal of Engineering for Industry, Vol. 89, pp. 813-823, 1967.
    [6] Thomsen, K. K., and Andersen, H., “Experimental Investigation of a Simple Squeeze Film Damper,” ASME, Journal of Engineering for Industry, Vol. 96, pp. 427-430, 1974.
    [7] Vance, J.M., and Kirton A.J., “Experimental Measurement of the Dynamic Force Response of a Squeeze Film Bearing Damper,” ASME, Journal of Engineering for Industry, Vol. 97, pp. 1282-1290,1975.
    [8] Bansal, P.N., and Hibner, D.H., “Experimental and Analytical Investigation of Squeeze Film Bearing Damper Force Induced by Offset Circular Whirl Orbits,” ASME, Journal of Mechanical Design, Vol. 100, pp. 549-557, 1978.
    [9] Lin, Y. H., and Lin, S. C., “Optimal Weight Design of Rotor Systems with Oil-Film Bearings Subjected to Frequency Constraints,” Finite Elements in Analysis and Design, Vol. 37, pp. 777-798, 2001.
    [10] Della, P. L., and Adilleta, G., “The Squeeze Film Damper over Four Decades of Investigations. Part I: Characteristics and Operating Features,” Shock & Vibration Digest, Vol. 34, No. 1, pp. 3-26, 2002.
    [11] Della P. L., and Adiletta, G., “The Squeeze Film Damper over Four Decades of Investigations. Part II: Rotordynamic Analyses with Rigid and Flexible Rotors,” Shock & Vibration Digest, Vol. 34, No. 2, pp. 97-126, 2002.
    [12] Sorge, F., “Influence of Rotor Suspension Anisotropy on Oil Film Instability,” ASME, Journal of Vibration and Acoustics, Vol. 140, pp. 1172-1184, 2018.
    [13] Hamzehlouia, S., and Behdinan, K., “Squeeze Film Dampers Supporting High-Speed Rotors: Rotordynamics,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 235, pp. 495-508, 2021.
    [14] Lund, J., “Critical Speeds, Stability and Response of Geared Train of Rotors,” ASME, Journal of Mechanical Design, Vol. 100, pp. 535-539, 1978.
    [15] Iida, H., Tamura, A., and Oonishi, M., “Coupled Torsion-Flexural Vibration of Shaft in Geared System,” Bulletin of JSME, Vol. 28, pp. 2494-2698, 1985.
    [16] Iida, H., and Yamamoto, H., “Dynamics Characteristic of a Geared Train System with Softly Supported Shaft,” Bulletin of JSME, Vol. 29, pp. 1811-1816, 1986.
    [17] Kahraman, A., Ozguven, H. N., Houser, D. R., and Zakrajsek, J. J., “Dynamic Analysis of Geared Rotors by Finite Elements,” ASME, Journal of Mechanical Design, Vol. 114, pp. 507-514, 1992.
    [18] Rao, J. S., Shiau, T. N., and Chang, J. R., “Dynamic Behavior of Geared Rotors,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 121, pp. 494-503, 1999.
    [19] Choi, S. T., and Mau, S. Y., “Dynamic Analysis of Geared Rotor-Bearing System by the Transfer Matrix Method,” ASME, Journal of Mechanical Design, Vol. 123, pp. 562-568, 2001.
    [20] Chen, Y. C., Dynamic Analysis of a Geared Rotor-Bearing System, Doctoral Dissertation, National Cheng Kung University, 2014.
    [21] 黃忠立, 轉子-軸承系統在多臨界轉速限制下之輕量化設計, 國立成功大學航空太空工程研究所碩士論文, 1987.
    [22] Vance, J.M., Rotordynamics of Turbomachinery, Wiley-Interscience, 1988.
    [23] 徐煒峻,王春仁,蘇柏丞,“具油膜軸承多階層車床主軸受夾頭工件偏心之不平衡響應分析, ”全國精密製造研討會, 國立勤益科技大學, 2012.
    [24] 阮競揚, 含橫向裂縫的轉子軸承系統之動態特性分析, 國立成功大學航空太空工程研究所碩士論文, 1997.
    [25] 蘇柏丞, 具特殊擠壓油膜軸承主軸系統之自由及強迫振動分析, 國立中正大學機械工程研究所碩士論文, 2012.
    [26] Han, Q. K., Chen, Y. G., Zhang, H., Jiang, L. L., and Li, X. J., “Vibrations of Rigid Rotor Systems with Misalignment on Squirrel Cage Supports,” Journal of Vibroengineering, Vol. 18, pp. 4329-4339, 2016.

    無法下載圖示 校內:2028-08-09公開
    校外:2028-08-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE