| 研究生: |
李君鴻 Lee, Chun-Hong |
|---|---|
| 論文名稱: |
應用可控制式側壁機構之新型乳化平台並應用於多重包覆乳化作用 Novel Droplet Formation Platforms Utilizing Controllable Moving Wall Structures for Double Emulsion Applications |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 微流體技術 、微米乳化液滴 、雙重乳化 、微機電系統 、乳化技術 、移動壁式流體阻斷器 、微流體聚焦 |
| 外文關鍵詞: | hydrodynamic flow focusing, emulsification, double emulsion, microfluidics, MEMS, microdroplet, moving wall |
| 相關次數: | 點閱:106 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微乳化液滴製備技術已廣泛地被應用在各種領域,本研究以微機電技術製作兩種不同設計的微流體乳化晶片,並成功地製作均勻性高之乳化液滴,且其中的一種晶片設計可產生雙重乳化微液滴。第一種新型乳化晶片透過可控制式側壁結構來調整流體聚焦寬度,並且在液體內產生微液滴。其主要結構包含一主動控制微管道寬度機構以及一微切斷器機構,用來調整控制聚焦寬度並產生微液滴。實驗數據顯示,透過注入不同壓力的壓縮空氣到側壁氣室後,可控制改變側壁的變形量,而微管道的寬度隨之改變。透過所提出的機制,樣品流可以被聚焦成更窄的寬度,並且透過此晶片控制產生的微液滴直徑尺寸可以更小。本研究中可以控制聚焦寬度到9μm,並且生成平均直徑約75μm的微液滴,變異係數值在7%以內。本晶片之設計可有效完成高均勻性之微奈米尺寸乳化晶片。
第二種微乳化液滴晶片整合了T型管道乳化技術、微流體聚焦技術與可控制式側壁結構,以產生雙重乳化微液滴。首先在前端T型管道搭配可控制式側壁處,利用流體連續相的剪切力大於分散相的表面張力,拉斷液滴形成油包水(w/o)的乳化液滴,接著後端利用微流體聚焦技術與切斷器側壁結構,在油相與外部水相交會區製作出w/o/w之雙重包覆液滴。實驗結果顯示,此微流體晶片成功製作出顆粒均勻的多重包覆微乳化液滴。藉由側壁結構的變形量,可改變流體的流速,進而改變液滴的尺寸。目前製作的三相微液滴直徑分佈為85μm~165μm,而其對應的內部液滴直徑分佈為60μm~80μm。此一結果驗證了本研究的可行性,更具有實際的應用潛力。
上述兩類新式微流體系統可以在乳液製程、奈米生醫和微液滴上做極為廣泛的運用,使此一技術平台更進一步拓展至生物技術和藥物傳輸的領域。
The formation of micro-scale mono-dispersed emulsions is essential for a variety of applications. This study describes two new microfluidic chips for emulsification using enabling microfluidic technologies. The main feature of these two chips is the capability of generating uniform microdroplets with varied size in liquids for emulsification applications. Briefly, the first study reports a microfluidic device capable of fine-tuning sample flow focusing and generating micro-scale droplets in liquids by utilizing a controllable moving wall structure. This was achieved by the combination of two integrated mechanisms including an active microchannel width controller and a micro chopper, into the microfluidic system. Experimental data showed that the deformation of the controllable moving wall structure can be adjusted pneumatically by applying different air pressure into the air chamber of the moving wall structure so that the width of the microchannel can be controlled accordingly. By utilizing the proposed mechanism, the sample flow could be focused into narrower width and well-controlled micro-droplets with smaller diameter could be generated by utilizing the developed microfluidic device. The sample flow width could be focused into 9 μm and micro-droplets with an average diameter of 75 μm could be generated by utilizing the proposed device with a variation less than 7%. In this study, two chips with parallel and concentric layouts for multiple channel emulsion have been successfully demonstrated.
The second microfluidic chip proposed can also be used to generate well size-controlled double emulsion microdroplets in liquids by integrating three mechanisms including a traditional emulsification process by a T-junction design, micro-flow focusing and the control of liquid flow by the moving-wall design. Briefly, by the combination of these mechanisms of the incorporated T-junction microchannel design and the moving wall mechanism, water-in-oil (w/o) droplets at the intersection of the water phase and the oil phase can be generated. Then, double emulsion droplets (w/o/w) were formed by using the flow focusing and the shear forces acting at the intersection of the oil phase and the external water phase. The experimental results showed that uniform double emulsion droplets were produced in a tunable manner utilizing the deformation of the moving wall structures. The diameters of the outer droplets range from 85μm to 165μm while the sizes of the internal droplets range from 60 μm to 80μm. This result demonstrates the feasibility of using the proposed system for generating size-controlled double emulsion microdroplets. These devices have shown great promise in various applications including emulsification, nano-medicine and droplet-based microfluidics.
[1] N. Maluf, “An Introduction to Microelectromechanical Systems Engineering,” Boston:Artech House, 1, 2000.
[2] K. Seiler, D. J. Harrison, and A Manz, ”Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, 593, 253-258, 1992.
[3] M. U. Kopp, A. J. de Mello and A. Manz, “Chemical Amplification: Continuous-Flow PCR on a Chip,” Science, 280, 1046-1048, 1998.
[4] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, “An Integrated Nanoliter DNA Analysis Device,” Science, 282, 484-487, 1998.
[5] D. J. Harrison, K. Fluri, Z. Fan, C. S. Effenhauser and A. Manz, “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip,” Science, 261, 895-897, 1993.
[6] S. J. Haswell and V. Skelton, “Chemical and Biochemical Microreactors,” Trends in Analytical Chemistry, 19, 389-395, 2000.
[7] T. McCreedy, “Fabrication Techniques and Materials Commonly Used for the Production of Microreactors and Micro Total Analytical Systems,” Trends in Analytical Chemistry, 19, 396-401, 2000.
[8] K. Y. Lien, W.C. Lee, H. Y. Lei and G. B. Lee, “Integrated Micro Reverse Transcription Polymerase Chain Reaction Systems Using Super-paramagnetic beads for Virus Detection,” IEEE NEMS 2006, Zhuhai, China, January, 18-21, 2006.
[9] C. S. Liao, G. B. Lee, T. M. Hsieh, F. C. Huang, C. H. Wang, C. L. Fan, H. S. Liu and C. H. Luo, “Monitoring the cDNA Synthesis Utilizing Microfabricated Reverse Transcription Polymerase Chain Reaction Chip,” The 8th Annual Nano Engineering and MEMS conference, 2004.
[10] C. Y. Lee, J. L. Lin, C. S. Liao, F. C. Huang and G. B. Lee, “Integrated Microfluidic Systems for DNA Analysis,” IEEE International Conference on Robotics and Biomimetics, Aug. 22-25, 2004.
[11] J. B. Yoon, C. H. Han, E. Yoon, and C. K. Kim, “Monolithic Integration of 3-D Electroplated Microstructures with Unlimited Number of Levels Using Planarization with a Sacrificial Metallic Mold (PSMM),” 12th IEEE International Conference on MEMS, Jan. 17-21, 624-629, 1999.
[12] T. Kawakatsu, Y. Kikuchi and M. Nakajima, “Regular-Sized Cell Creation in Microchannel Emulsification by Visual Microprocessing Method,” Journal of the American Oil Chemists' Society, 74, 317-321, 1997.
[13] T. Kawakatsu, H. Komori, M. Nakajima, Y. Kikuchi and T. Yonemoto, “Production of Monodispersed Oil-in-Water Emulsion Using Crossflow-Type Silicon Microchannel Plate,” Journal of Chemical Engineering of Japan, 32, 241-244, 1999.
[14] W. S. Rayleigh, “On the instability of jets,” Proceeding of London Mathematics Society, 10, 4-13, 1878.
[15] S. M. Jafari, Y. He, B. Bhandari, “Nano-emulsion production by sonication and microfluidization – a comparison,” International Journal of Food Properties, 9, 475-485, 2006.
[16] A. V. Korobko, W. Jesse, and van J. R. C. der Maarel, “Encapsulation of DNA by Cationic Diblock Copolymer Vesicles,” Langmuir, 21, 34 -42, 2005.
[17] S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Nanomedicine: current status and future prospects,” Journal of the Federation of American Societies for Experimental Biology, 19, 311-330, 2005.
[18] T. Kojima, Y. Takei, M. Ohtsuka, Y. Kawarasaki, T. Yamane and H. Nakano, “PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets,” Nucleic Acids Research, 33, 17, e150, 2005.
[19] G. T. Vladisavljevic and H. Schubert, “Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes,” Desalination, 144, 167-172, 2002.
[20] D. J. McClements, “Food Emulsions: Principles, Practice, and Techniques,” CRC Press LLC, Boca Raton,USA, 1999.
[21] 陳承佐, “新型乳化液滴平台研發,” 國立成功大學工程科學研究所碩士論文, 2006.
[22] S. Takeuchi, P. Garstecki, D. B. Weibel and G. M. Whitesides, “An Axisymmetric Flow-Focusing Microfluidic Device,” Advanced Materials, 17, 1067-1072, 2005.
[23] S. Suriura, M. Nakajima, and M. Seki, “Effect of channel structure on microchannel emulsification,” Langmuir, 18, 5708-5712, 2002.
[24] S. Sugiura, M. Nakajima, H. Ushijima, K. Yamamoto, and M. Seki, “Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification,” Journal of Chemical Engineering of Japan, 34, 757-765, 2001.
[25] S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, and M. Seki, “Characterization of spontaneous transformation-based droplet formation during microchannel emulsification,” Journal of Physical Chemistry B, 106, 9405-9409, 2002.
[26] J. Tong, M. Nakajima, H. Nabetani, Y. Kikuchi and Y. Maruta, “Production of oil-in-water microspheres using a stainless steel microchannel,” Journal of Colloid and Interface Science, 237, 239-248, 2001.
[27] I. Kobayashi, M. Yasuno, S. Iwamoto, A. Shono, K. Satoh and M. Nakajima, “Microscopic observation of emulsion droplet formation from a polycarbonate membrane,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 207, 185-196, 2002.
[28] V. Schroder and H. Schubert, “Production of emulsions using microporous, ceramic membranes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152, 103-109, 1999.
[29] A. J. Abrahamse, R. Lierop, R. G. M. Sman, A. Padt, and R. M. Boom, “Analysis of droplet formation and interactions during cross-flow membrane emulsification,” Journal of Membrane Science, 204, 125-137, 2002.
[30] N. C. Christov, D. N. Ganchev, N. D. Vassileva, N. D. Denkov, K. D. Danov, and P. A. Kralchevsky, “Capillary mechanisms in membrane emulsification: oil-in-water emulsions stabilized by Tween 20 and milk proteins,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209, 83-104, 2002.
[31] F. J. Zendejas, U. Srinivasan, W. J. Holtz, J. D. Keasling, and R. T. Howe, “Microfluidic generation of tunable emulsions for template monodispersed silica,” Transducers 2005, 1473-1476, 2005.
[32] C. Simonnet, and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Applied Physics Letters, 87, 114104, 1-3, 2005.
[33] P. Garstecki, I. Gitlin, W. DiLuzio, and G. M. Whitesides, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Applied Physics Letter, 85, 2649-2651, 2004.
[34] M. B. Lucia, F. M. Maria, R. C. Pascual, R. G. Alfonso, C. Angel, C. Sebastian, and M. G. C. Alfonso, “Flow focusing: A versatile technology to produce size-controlled and specific-morphology microparticles,” Small, 1(7), 688-692, 2005.
[35] M. R. Davidson, D. J. E. Harvie and J. J. Cooper-White, “Flow focusing in microchannels,” Australian and New Zealand Industrial and Applied Mathematics Journal, 46, C47-C58, 2005.
[36] T. Ward, M. Faivre, M. Abkarian, H. A. Stone, “Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping,” Electrophoresis, 26, 3716-3724, 2005.
[37] L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-Performance Flow-Focusing Geometry for Spontaneous Generation of Monodispersed Droplets,” Lab on a Chip, 6, 1073-1079, 2006.
[38] S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow-focusing’ in microchannels,” Applied Physics Letter, 82, 364-366, 2003.
[39] Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensors and Actuators B: Chemical, 114, 350-356, 2006.
[40] T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab on a Chip, 2, 24-26, 2002.
[41] S. Haeberle, R. Zengerle, and J. Ducree, “Monodisperse droplet trains and segmented flow for centrifugal microfluidics,” Proceedings of 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2005, 635-637, 2005.
[42] S. K. Hsiung, C. T. Chen and G. B. Lee, “Micro-droplet Formation Utilizing Microfluidic Flow Focusing and Controllable Moving-wall Chopping Techniques,” Journal of Micromechanics and Microengineering, 16, 2403-2410, 2006.
[43] C. T. Chen, and G. B. Lee, “Formation of Micro-droplets in Liquids Utilizing Active Pneumatic Choppers on a Microfluidic Chip,” IEEE/ASME Journal of Microelectromechanical Systems, in press, 2006.
[44] S. Sugiura, M. Nakajima, H. Ushijima, K. Yamamoto, T. Oda, M. Satake, and M. Seki, “Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification,” Journal of Colloid and Interface Science, 270, 221-228, 2004.
[45] A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated form a microcapillary device,” Science, 308, 537-541, 2005.
[46] T. Nisisako, S. Okushima, and T. Torii, “Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system,” Soft Matter, 1, 23, 2005.
[47] H. J. Oh, S. H. Kim, J. Y. Baek, G. H. Seong, and S. H. Lee, “Hydrodynamic micro-encapsulation of aqueous fluids and cells via ‘on the fly’ photopolymerization,” Journal of Micromechanics and Microengineering, 16, 285-291, 2006.
[48] R. J. Yang, C. C. Chang, S. B. Huang and G. B. Lee, “A new focusing model and switching approach for electrokinetic flow inside microchannels,” Journal of Micromechanics and Microengineering, 15, 2141-2148, 2005.
[49] G.. B Lee, B. H. Hwei and G. R. Huang, “Micromachined pre-focused MxN flow switches for continuous multi-sample injection,” Journal of Micromechanics and Microengineering, 11, 654-661, 2001.
[50] 戴健軒, “細胞分離及細胞核萃取之自動化晶片平台,” 國立成功大學工程科學研究所碩士論文, 2005.
[51] 黃朝均, “整合微流體之葡萄糖檢測及自動化胰島素注射系統,” 國立成功大學奈米科技暨微系統工程研究所碩士論文, 2006.
[52] K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata and T. Araki, “Molecularly imprinted uniform-size polymer-based stationary phase for high performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition,” Journal of Chromatography A, 728, 139-147,1996.
[53] B. E. Slentz, N. A. Penner and F. E. Regnier, “Capillary Electrochromatography of Peptides on Microfabricated Poly(dimethylsiloxane) Chips Modified by Cerium(IV)-catalyzed Polymerization,” Journal of Chromatography A, 948, 225–233, 2002.