簡易檢索 / 詳目顯示

研究生: 陳威威
Tanera, Michael Setiadi
論文名稱: 厭氧系統中甲烷菌與乙酸菌競爭關係之研究
Interaction and Competition Between Methanogens and Acetogens in Anaerobic System
指導教授: 黃良銘
Whang, Langmuir
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 93
外文關鍵詞: acetogens, ampicillin, inhibition, methanogens, 2-bromoethanesulfonate
相關次數: 點閱:168下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nowadays, energy demand is one of the hottest issue that we have. Caused by human population exponential growth in last decades, energy is predicted would not enough for fulfilling human needs, but higher bio-waste. Anaerobic bacteria have ability to convert common bio-waste such as polysaccharide to make a methane gas which has a big energy storage. In this research, we focus on the last step of methane production anaerobic bacteria, which are methanogens and acetogens. We examine the effect of acetogens and methanogens inhibition in anaerobic system. We use 2-bromoethanesulfonate (BES) and ampicillin for doing inhibition on methanogens and acetogens, respectively. Batch culture has done in different initial condition to analyze their performance at 35oC temperature and on 120 rpm shaker.
    Results shows that 50 mM of BES can fully inhibit 5 mL of sludge in 150 mL working volume, meanwhile 300 ppm of ampicillin can inhibit acetogens. Moreover, from the result we can conclude that methanogens will produce methane gas when the hydrogen gas concentration inside the system is low. Hydrogenotrophic methanogens and acetoclastic methanogens will have better performance when each of them work separately. Thus, the higher acetate concentration will generate acetoclastic methanogens to increase the ratio between methane and carbon dioxide production. Acetoclastic methanogens and hydrogenotrophic methanogens has 48 hours and 72 hours of lag phase, respectively, before they produce methane gas. Nevertheless, Acetoclastic methanogens has higher rate than Hydrogenotrophic methanogens, but after around 2.5 mmol x carbon atom of substrate is exist, the Hydrogenotrophic methanogens has higher methane production rate.

    ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iv LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives of Study 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 World Energy Demand and The Problem 4 2.3 Methane Combustion as Source of Renewable Energy 6 2.2 Anaerobic Digestion 9 2.4 Methanogens 10 2.4.1 Overview of Methanogens 10 2.4.2 Methanogens Order 11 2.4.3 Methanogens Ecology 15 2.4.4 Methanogens Metabolic Pathway 27 2.5 Acetogens 33 2.5.1 Overview of Acetogens 33 2.5.2 Acetogens Habitat 37 2.5.3 Acetogens Metabolic Pathway 37 2.6 Effect of Inhibitor Compound to Methanogens Bacteria 41 2.6.1 Structural Analog of Co-Enzymes A 42 2.6.2 Hydroxymethylglutaryl-SCoA (HMG-CoA) reductase 43 2.6.3 Medium or Long Chain Fatty Acid 44 2.6.4 Nitrocompound and Phosphate 44 2.6.5 Ethylene and Acetylene 45 2.6.6 Halogenated Aliphatic Hydrocarbon 46 2.7 Effect of Inhibitor Antibiotics to Acetogens Bacteria 46 2.7.1 Ampicillin 46 2.7.2 Florfenicol 47 2.7.3 Tylosin 47 CHAPTER 3 METHODOLOGY 49 3.1 The Approach of This Work 49 3.2 Medium Preparation 52 3.3 Sludge Preparation 53 3.4 Continuous Stirred Tank Reactor 54 3.5 Batch Culture 55 3.5.1 Batch A 56 3.5.2 Batch B 57 3.5.3 Batch C 57 3.5.4 Batch D 58 3.5.5 Batch E 58 3.5.6 Batch F 59 3.5.7 Batch G 59 3.5.8 Batch H 60 3.6 Analytical Method 61 3.6.1 Gas Analysis 61 3.6.2 HPLC Analysis 61 CHAPTER 4 RESULT AND DISCUSSION 62 4.1 Batch A as Control 63 4.2 BES Concentration to Inhibit Methanogens 65 4.3 Ampicillin Concentration Inhibit Acetogens 68 4.4 Glucose Effect in Anaerobic Sludge 70 4.5 Homoacetogens Performance 74 4.6 Acetoclastic Methanogens Performance 75 4.7 Hydrogenotrophic Methanogens Performance 79 4.8 Glucose Consumption without Methanogens 82 4.9 Methane Production Rate Comparison 84 4.10 The Effects of Glucose in Homoacetogens Performance 85 CHAPTER 5 CONCLUSION 87 REFERENCES 89

    Aiyuk, S., Forrez, I., van Haandel, A., & Verstraete, W. (2006). Anaerobic and complementary treatment of domestic sewage in regions with hot climates—A review. Bioresource Technology, 97(17), 2225-2241.
    Amils R. (2011) Euryarchaeota. In: Gargaud M. et al. (eds) Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg
    Anderson, R. C., Carstens, G. E., Miller, R. K., Callaway, T. R., Schultz, C. L., Edrington, T. S., ... & Nisbet, D. J. (2006). Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Bioresource technology, 97(18), 2421-2426.
    Anderson, R. C., Rasmussen, M. A., Jensen, N. S., & Allison, M. J. (2000). Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. International journal of systematic and evolutionary microbiology, 50(2), 633-638.
    Bauchop, T. (1967). Inhibition of rumen methanogenesis by methane analogues. Journal of Bacteriology, 94(1), 171-175.
    Berk, H., & Thauer, R. K. (1997). Function of coenzyme F420-dependent NADP reductase in methanogenic archaea containing an NADP-dependent alcohol dehydrogenase. Archives of microbiology, 168(5), 396-402.
    Božic, A. K., Anderson, R. C., Carstens, G. E., Ricke, S. C., Callaway, T. R., Yokoyama, M. T., ... & Nisbet, D. J. (2009). Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin® and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bioresource technology, 100(17), 4017-4025.
    Bryskier, A. (2005). Agents against methicillin-resistant Staphylococcus aureus. In Antimicrobial Agents (pp. 1183-1238). American Society of Microbiology.
    Capone, D. G., & Kiene, R. P. (1988). Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnology and Oceanography, 33(4part2), 725-749.
    Chidthaisong, A., & Conrad, R. (2000). Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biology and Biochemistry, 32(7), 977-988.
    Conrad, R., Klose, M., & Claus, P. (2000). Phosphate inhibits acetotrophic methanogenesis on rice roots. Applied and environmental microbiology, 66(2), 828-831.
    Costa, K. C., & Leigh, J. A. (2014). Metabolic versatility in methanogens. Current opinion in biotechnology, 29, 70-75.
    Eastman, J. A., & Ferguson, J. F. (1981). Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. Journal (Water Pollution Control Federation), 352-366.
    Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E. J., Holland, E., ... & Midgley, P. (2001). Atmospheric chemistry and greenhouse gases (No. PNNL-SA-39647). Pacific Northwest National Laboratory (PNNL), Richland, WA (US).
    Garner, W. E., & Ham, A. J. (1939). The combustion of methane. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 80-101.
    Gonzalez, N., Galindo, J., González, R., Sosa, A., Moreira, O., Delgado, D., ... & Sanabria, C. (2006). Utilization of the real time PCR and in vitro gas production technique for determining the effect of bromoethanesulfonic acid on the methanogenesis and rumen microbial population. Cuban Journal of Agricultural Science, 40(2), 171.
    Grotenhuis, J. T. C., Smit, M., van Lammeren, A. A. M., Stams, A. J. M., & Zehnder, A. J. B. (1990). Effect of interspecies hydrogen transfer on the bacteriological structure of methanogenic granular sludge.
    Grotenhuis, J. T., Smit, M., Plugge, C. M., Xu, Y. S., Van Lammeren, A. A., Stams, A. J., & Zehnder, A. J. (1991). Bacteriological composition and structure of granular sludge adapted to different substrates. Applied and Environmental Microbiology, 57(7), 1942-1949.
    Hickey, R. F., Vanderwielen, J., & Switzenbaum, M. S. (1987). The effects of organic toxicants on methane production and hydrogen gas levels during the anaerobic digestion of waste activated sludge. Water Research, 21(11), 1417-1427.
    Hiraoka, M., Takeda, N., Sakai, S., & Yasuda, A. (1985). Highly efficient anaerobic digestion with thermal pretreatment. Water Science and Technology, 17(4-5), 529-539.
    HOEHLER, T.M. et al. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta. 62: 1745–1756.
    Hori, T., Haruta, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2006). Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and environmental microbiology, 72(2), 1623-1630.
    Hu, B., & Chen, S. (2007). Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 32(15), 3266-3273.
    Imkamp, F., & Müller, V. (2007). Acetogenic bacteria. eLS.
    Kendall, M.M. et al. (2007). Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl. Environ. Microbiol. 73: 407–414.
    Kim, J. R., Min, B., & Logan, B. E. (2005). Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Applied microbiology and biotechnology, 68(1), 23-30.
    Kobayashi, H. A., de Macario, E. C., Williams, R. S., & Macario, A. J. (1988). Direct characterization of methanogens in two high-rate anaerobic biological reactors. Applied and environmental microbiology, 54(3), 693-698.
    Leclerc, M., Delgènes, J. P., & Godon, J. J. (2004). Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environmental Microbiology, 6(8), 809-819.
    Liu, Y., & Whitman, W. B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 1125(1), 171-189.
    Lowe, D. C. (2006). Global change: a green source of surprise. Nature, 439(7073), 148-149.
    Machmüller, A., Soliva, C. R., & Kreuzer, M. (2002). In vitro ruminal methane suppression by lauric acid as influenced by dietary calcium. Canadian journal of animal science, 82(2), 233-239.
    McHugh, S., Carton, M., Mahony, T., & O'Flaherty, V. (2003). Methanogenic population structure in a variety of anaerobic bioreactors. FEMS microbiology letters, 219(2), 297-304.
    Mitchell, S. M., Ullman, J. L., Teel, A. L., Watts, R. J., & Frear, C. (2013). The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresource technology, 149, 244-252.
    Nollet, L., Demeyer, D., & Verstraete, W. (1997). Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Applied and environmental microbiology, 63(1), 194-200.
    Orcutt, B., & Meile, C. (2008). Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences Discussions, 5(3), 1933-1967.
    Oremland, R. S., & Capone, D. G. (1988). Use of “specific” inhibitors in biogeochemistry and microbial ecology. In Advances in microbial ecology (pp. 285-383). Springer US.
    PARKES, R.J. et al. (2007). Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 9: 1146– 1161.
    Sanz J.L. (2011) Methanogens. In: Gargaud M. et al. (eds) Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg
    Scholten, J. C., Conrad, R., & Stams, A. J. (2000). Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment. FEMS Microbiology Ecology, 32(1), 35-42.
    Soliva, C. R., Hindrichsen, I. K., Meile, L., Kreuzer, M., & Machmüller, A. (2003). Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Letters in Applied Microbiology, 37(1), 35-39.
    Tiehm, A., Nickel, K., Zellhorn, M., & Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water research, 35(8), 2003-2009.
    Ungerfeld, E. M., Rust, S. R., Boone, D. R., & Liu, Y. (2004). Effects of several inhibitors on pure cultures of ruminal methanogens. Journal of applied microbiology, 97(3), 520-526.
    Ungerfeld, E. M., Rust, S. R., Burnett, R. J., Yokoyama, M. T., & Wang, J. K. (2005). Effects of two lipids on in vitro ruminal methane production. Animal Feed Science and Technology, 119(1), 179-185.
    Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 13:1000– 1013
    Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1), 291-314.
    Widdel, F. (1986). Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Applied and Environmental Microbiology, 51(5), 1056-1062.
    Widdel, F., & Wolfe, R. S. (1989). Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F 420-specific enzyme from Methanogenium thermophilum strain TCI. Archives of Microbiology, 152(4), 322-328.
    Wolin, M. J., & Miller, T. L. (2006, July). Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors. In International Congress Series (Vol. 1293, pp. 131-137). Elsevier.
    Wüst, P. K., Horn, M. A., & Drake, H. L. (2009). Trophic links between fermenters and methanogens in a moderately acidic fen soil. Environmental microbiology, 11(6), 1395-1409.
    Zinder, S. H. (1993). Physiological ecology of methanogens. In Methanogenesis (pp. 128-206). Springer US.
    Zinder, S. H., Anguish, T., & Cardwell, S. C. (1984). Effects of temperature on methanogenesis in a thermophilic (58 C) anaerobic digestor. Applied and environmental microbiology, 47(4), 808-813.

    下載圖示 校內:2023-02-07公開
    校外:2023-02-07公開
    QR CODE