| 研究生: |
廖文祺 Liao, Wen-Chi |
|---|---|
| 論文名稱: |
碳化鎢薄膜應用於高溫太陽能吸收器之製程研究 Study of Fabrication Process for Tungsten Carbide Thin Film Used for High-Temperature Solar Energy Absorber |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 碳化鎢塗層 、太陽能吸收 、田口方法 、高速火焰熔射 、吸收率 |
| 外文關鍵詞: | Tungsten carbide thin film, Solar absorber, Taguchi method, High-velocity oxygen fuel, Absorptance |
| 相關次數: | 點閱:131 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以高溫且有高吸收率的太陽能吸收塗層為目標。首先利用高速火焰熔射(High-velocity oxygen fuel, HVOF)製程來噴塗碳化鎢/鈷的塗層,在塗層表面再用雷射雕刻製程改變表面微結構形貌。另利用田口方法,建立直交表來配置雷射雕刻製程實驗參數,實驗參數包括塗層厚度、雷射功率、雷射雕刻速度、雕刻間距、雷射頻率。當完成不同實驗參數樣本,可於因子效應分析與變異分析中找出最佳製程參數。本研究根據田口方法所建議之最佳製程參數來進行進一步的微調,從實驗結果得知吸收率最高可達96.5%。從塗層形貌、材料元素分析與晶相結構分析,得知塗層表面的孔洞結構與雷射雕刻於碳化鎢/鈷所產生的晶相為造成高吸收率的原因。
This study is aimed at development of high-temperature and high-absorptance thin film coating on solar absorber. Firstly, a multi-layers film coating structure made of tungsten carbide/cobalt is fabricated by using high-velocity oxygen fuel (HVOF) technology. Secondly, laser engraving technology is utilized to make micro-scale structures on the tungsten carbide/cobalt thin film. The fabrication parameters of laser engraving process, such as film thickness, engraving power, engraving velocity, frequency of laser, and pitch of engraving, is tested by experiments on solar energy absorptance and morphology observation. Based on the experiments conducted, the laser engraving parameters have been optimized by means of the Taguchi method with orthogonal array of the samples. Results show that by properly adjusting the combination of the parameters, the absorptance of the solar energy reaches 96.5% in the experiments. Further crystalline phase material element analysis and structural analysis show that the high absorptance is mainly caused by the morphology of the micro-scale pore structures and the compounds formed on the surface of the thin film after the laser engraving.
[1] Q.-C. Zhang, "Stainless-steel–AlN cermet selective surfaces deposited by direct current magnetron sputtering technology," Solar Energy Materials and Solar Cells, vol. 52, pp. 95-106, 1998.
[2] Q.-C. Zhang, "Recent progress in high-temperature solar selective coatings," Solar Energy Materials and Solar Cells vol. 62, pp. 63-74, 2000.
[3] H. C. Barshilia, N. Selvakumar, K. S. Rajam, and A. Biswas, "Spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar applications," Solar Energy Materials and Solar Cells, vol. 92, pp. 495-504, 2008.
[4] S. A. Esposito, A. Addonizio, M. L. Aprea, S., "Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature," Thin Solid Films, vol. 517, pp. 6000-6006, 2009.
[5] L. Pawlowski, The science and engineering of thermal spray coatings: Wiley, 2008.
[6] 呂明生、蕭威典、劉茂賢, "熱熔射塗層技術在工業界之應用," 工業材料雜誌, pp. 151-158, 2008年1月.
[7] 李輝煌, "田口方法-品質設計的原理與實務," 高立圖書有限公司, 2011.
[8] R. N. Kacker, E. S. Lagergren, and J. J. Filliben, "Taguchi’s orthogonal arrays are classical designs of experiments," Journal of research of the National Institute of Standards and Technology, vol. 96, 1991.
[9] V.K. Sarin, In: D.Y. Chin (Ed.), "Cemented Carbide Cutting Tools," Advances in Powder Technology,Ed. D. Y. Chin, ASM, pp. 253-287, 1981.
[10] Z. Yao, J. J. Stiglich, and T. Sudarshan, "Nano-grained tungsten carbide–cobalt (WC/Co)," ed: Working paper. Fairfax: Materials Modification,. Print, 2002.
[11] J. FLAHAUT, "The life and scientific work of henri moissan," Journal of Fluorine Chemistry, vol. 33, pp. 27-44, 1986.
[12] M. P. Jahan, Y. San Wong, and M. Rahman, "A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304)," The International Journal of Advanced Manufacturing Technology, vol. 46, pp. 1145-1160, 2010.
[13] R. Schwetzke and H. Kreye, "Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems," Journal of Thermal Spray Technology, vol. 8, pp. 433-439, 1999.
[14] C. Verdon, A. Karimi, and J.-L. Martin, "A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures," Materials Science and Engineering: A, vol. 246, pp. 11-24, 1998.
[15] J. Nerz, B. Kushner, and A. Rotolico, "Microstructural evaluation of tungsten carbide-cobalt coatings," Journal of Thermal Spray Technology, vol. 1, pp. 147-152, 1992.
[16] S. K. Asl, M. H. Sohi, K. Hokamoto, and M. Uemura, "Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings," Wear, vol. 260, pp. 1203-1208, 2006.
[17] R. Pennefather, S. Hankey, R. Hutchings, and A. Ball, "Recent observations of the erosion of hard materials," Materials Science and Engineering: A, vol. 105, pp. 389-394, 1988.
[18] N. M. NAHAR, G. H. MO, and A. IGNATIEV, "A spectrally selective high temperature stable Al2O3-Co solar absorber coating," Solar Energy Materials vol. 14, pp. 129-141, 1986.