簡易檢索 / 詳目顯示

研究生: 王湘韻
Wang, Hsiang-Yun
論文名稱: 以非病毒性載體PEI輸送抗癌基因對鱗狀上皮細胞癌之效應
PEI-mediated Anti-cancer Gene Delivery to Cutaneous Squamous Carcinoma Cell
指導教授: 蔡瑞真
Tsai, Jui-Chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 141
中文關鍵詞: 鱗狀上皮細胞癌(SCC)基因傳遞polyethylenimine(PEI)WWOX基因p53基因
外文關鍵詞: Squamous cell carcinoma (SCC), gene delivery, polyethylenimine(PEI), WWOX gene, p53 gene
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 皮膚鱗狀上皮細胞癌(cutaneous squamous cell carcinoma)是一種惡性且易轉移的皮膚腫瘤,在皮膚癌的發生率中排名第二位,近十年來發生率有明顯上升的趨勢。臨床上治療方法包括外科手術、放射治療、化學治療,以及尚於研究階段的治療方式有免疫療法以及基因療法。
    WWOX基因位於人類染色體16q23.3-24.1的位置,可產生含雙色胺酸功能區氧化還原酶(ww domain-containing oxidoreductase)。近年來的研究顯示相較於正常細胞,WOX1 蛋白質在腫瘤細胞的表現量較低、甚或是完全不表現,可能是造成腫瘤生成的因素之一。TP53基因研究迄今已三十餘年,當外來或內生性壓力產生時,在細胞反應調節上p53蛋白扮演重要角色。TP53基因主要功能在於調節轉錄作用,調節細胞週期靜止及細胞凋亡。在皮膚癌的發生過程中,會因UV光長期暴露而使DNA受損產生顯著性的TP53基因突變。
    基因傳遞(gene delivery)的技術在發展基因療法(gene therapy)上佔了很重要的部分。基因傳遞的路徑很多,若要採用非侵入性的方式則需要一個有效的載體以達到基因傳遞的目的。PEI為帶正電荷的聚合物載體,各種研究證實能成功的將基因傳送入各種不同的細胞,而各細胞適合之轉染條件有所不同,因此用於不同細胞之轉染條件仍須確認。
    本研究之目的在探討PEI作為皮膚基因輸送載體之可行性。藉由WWOX基因與TP53基因作為目標抗癌基因,將於體外皮膚細胞實驗觀察其轉染效率與細胞凋亡效應,並評估複合物投與腫瘤組織後之抗癌表現。
    Gel retardation 試驗研究結果顯示,PEI/DNA複合物比例大於4:1即可形成有效包覆之複合物。藉由Flow cytometry研究轉染效率,其結果顯示對於SCC-15及HaCaT兩細胞株,在相同的PEI濃度下,轉染效率皆與DNA量成正比,而與DNA種類無關;PEI載體的轉染效率皆低於Lipofectamine載體。細胞凋亡反應方面,在SCC-15細胞中由WWOX基因引起的凋亡反應,不因DNA含量增加而上升,而p53基因有劑量依存性,而DNA種類並未影響細胞凋亡反應。對於HaCaT而言,WWOX基因與p53基因引起的凋亡反應皆與DNA含量相關,並與DNA種類無關;而PEI載體在HaCaT產生之細胞凋亡反應皆高於Lipofectamine,對於SCC-15則與Lipofectamine所產生之細胞凋亡反應略同。基於上述研究結果,選擇DNA含量為2μg/mL(N/P ratio 8:1)評估其蛋白質表現。結果顯示,給與含有WWOX-pEGFPC1基因的複合物相較於對照組皆會使WWOX蛋白質表現明顯增加;對於HaCaT,使用PEI作為載體於WWOX蛋白質表現量與Lipofectamine之間無差異;對於SCC-15,使用PEI於WWOX蛋白質表現量除了在WWOX-pEGFPC1 2μg/mL較Lipofectamine高,其餘組別兩者之間並無差異。給與含有p53-DsRedN1基因的複合物相較於對照組皆會使p53(DsRed)蛋白質表現明顯增加,使用PEI時除了在WWOX-pEGFPC1 1μg/mL合併p53-DsRedN11μg/Ml SCC-15表現較高外,其餘組別兩者之間並無差異。動物腫瘤生長抑制結果則顯示相較於對照組,PEI/WWOX-pEGFPC1、PEI/WWOX-pEGFPC1+ PEI/p53-pDsRedN1、Lipo/WWOX-pEGFPC1及PEI/p53-pDsRedN1皆能明顯抑制腫瘤生長,其中又以PEI/WWOX-pEGFPC1最有抑制效果。
    本研究利用WWOX基因及p53基因作為抗癌基因研究,由動物體內試驗研究結果發現WWOX基因及p53基因對於鱗狀上皮細胞癌確實有相當程度的抑制腫瘤效果。利用PEI作為基因傳遞載體,於細胞轉染效率、細胞凋亡效應、蛋白質表現皆與Lipofectamine載體無差異,由於PEI具易取得且經濟之優點,因此PEI與WWOX基因及p53基因的複合物對於未來臨床抗癌具有相當潛力,
    亦可做為未來相關皮膚基因傳遞研究之參考。

    關鍵詞:鱗狀上皮細胞癌,基因傳遞,polyethylenimine(PEI),WWOX基因,
    p53基因

    Cutaneous squamous cell carcinoma (SCC) is the second most common form of skin cancer. The incidence of this type of skin cancer has increased greatly for the past decade. The treatment for treatment of squamous cell carcinoma include surgery, radiotherapy, chemotherapy, immunotherapy and gene therapy.
    Human WWOX gene, encoding the WWOX/FOR/WOX1 family proteins, is mapped to a fragile site on chromosome 16q23.2. WOX1 protein is considered as a candidate tumor suppressor protein. TP53 gene is located on the short arm of chromosome 17p13.1. It is well-known that p53 protein is important for cellular response to a wide variety of stressful stimulation. During the development of skin cancer, loon-term ultraviolet radiation (UVR) exposure can alter gene activity in keratinocytes, resulting notably p53 mutantion.
    The technology of gene delivery plays an important role in the evelopment of gene therapy. Several methods have been developed to transfer DNA into cells for gene therapy. One of the non-invasive gene delivery methods is the use of gene vectors or carriers. Polyethylenimine (PEI) is a cationic polymer-based gene carrier,. Many researches demonstrated that PEI can transfer genes into different kind of cells under different transfection conditions.
    The aim of this study was to examine the feasibility of using PEI as gene carrier to deliver WWOX gene TP53 gene to squamous cell carcinoma. The PEI/DNA complexes of different N/P ratios were characterized by gel retardation assay. Transfection efficiency, degree of cell apoptosis and protein expression were analyzed in SCC cells and HaCaT cells, in order to determine optimal transfection conditions for PEI/DNA complexes to be used in in vivo experiments.
    Results of gel retardation assay showed that WWOX gene formed complexes with PEI when N/P ratios were greater than 4:1. It was demonstrated that transfection efficiency were related to the amount of DNA, but not to DNA types in both cell lines, and transfecton efficiency of PEI was lower than that of Lipofectamine. In SCC-15 cells, degree of apoptosis induced by WWOX gene were not related with DNA types. However, degree of apoptosis induced by p53 gene were dose-dependent. On the other hand, degree of apoptosis induced by both WWOX gene and p53 gene in HaCaT cell was associated with DNA content but not with DNA types. Degree of apoptosis induced by PEI/DNA complex was more prominent than lipo/DNA complex in HaCaT cells, while they were comparable in SCC-15 cells.
    Based on the above data, vector/DNA 2μg/mL (N/P ratio 8:1) was selected for the following evaluation. The results displayed that WWOX protein expression was significantly increased in comparison with control groups in both cell lines. For HaCaT cell, protein expression level was comparable between PEI and Lipo as vectors, while in SCC-15 Cell, protein expression level by PEI-mediated gene delivery was greater than Lipo. Direct injection of vector/DNA complexes into tumor-bearing mice demonstrated that PEI/WWOX pEGFPC1, PEI/WWOX-pEGFPC1+ PEI/p53-pDsRedN1, Lipo/WWOX-pEGFPC1 and PEI/p53-pDsRedN1 complexes significantly inhibited tumor growth in comparison to the control. Among these groups, the effect from PEI/WWOX-pEGFPC1 complex was the most prominent.
    In summary, the current study demonstrated that both WWOX gene and p53 gene can be effectively delivered to squamous cell carcinoma by PEI and Lipofectamine and effectively reduced tumor size in vivo. The effect of PEI was comparable to Lipofectamine in terms of transfection efficiency, apoptotic effect and protein expression, with the advantages of easy accessibility and cost-effectiveness. It is concluded PEI with WWOX gene and p53 gene complexes is a potential therapeutics for squamous cell carcinoma.

    Keywords:Squamous cell carcinoma (SCC), WWOX gene, p53 gene, gene delivery, polyethylenimine(PEI)

    中文摘要 I 英文摘要 III 誌謝 VI 目 錄 VII 表目錄 X 圖目錄 XII 縮寫表 XV 第壹章 文獻回顧 1 第一節 鱗狀上皮細胞癌 1 一、 鱗狀上皮細胞癌之定義及流行病學 1 二、 鱗狀上皮細胞癌之危險因子 1 三、 鱗狀上皮細胞癌之治療 5 第二節 含色胺酸功能氧化還原酶 8 一、 含色胺酸功能氧化還原酶定義與分布 8 二、 含色胺酸功能氧化還原酶的調控 12 三、 含色胺酸功能氧化還原酶與癌症的關係 12 四、 含色胺酸功能氧化還原酶在鱗狀上皮細胞癌中的角色 15 第三節 TP53 19 一、 TP53基因 19 二、 TP53基因與癌症的關係 20 三、 TP53基因在鱗狀上皮細胞癌中的角色 21 第四節 基因傳遞 24 一、 病毒性載體 24 二、 非病毒性基因傳遞 29 第貳章 研究目的 43 第参章 研究材料與方法 44 第一節 實驗材料 44 一、 實驗細胞株 44 二、 質體DNA 44 三、 試劑與藥品 46 四、 抗體 50 五、 耗材 50 六、 儀器 52 七、 實驗動物 53 第二節 實驗方法 54 一、 細胞培養 54 二、 製備染色體DNA 59 三、 載體/基因複合物 62 四、 Gel retardation assay 64 五、 轉染效率 65 六、 細胞凋亡分析 67 七、 反轉錄聚合酶連鎖反應(RT-PCR) 70 八、 鱗狀上皮細胞癌動物模式建立 74 九、 In vivo皮膚基因傳遞 75 十、 西方墨點法 76 第三節 統計分析 79 第肆章 研究結果 80 第一節 Gel retardation 80 第二節 複合物對SCC-15與HaCaT之轉染效率 82 第三節 複合物對SCC-15與HaCaT之細胞凋亡 88 第四節 反轉錄聚合酶連鎖反應(RT-PCR) 94 第五節 西方墨點法 104 第六節 In vivo基因傳遞 118 第伍章 討論 124 第一節N/P ratios 對PEI/p53複合物形成之影響 124 第二節複合物對轉染效率之影響 125 第三節複合物對細胞凋亡之影響 126 第四節 複合物對SCC-15與HaCaT細胞之差異 128 第五節WWOX基因/P53基因於鱗狀上皮細胞癌之可行性 130 第陸章 結論 131 參考文獻 132

    Al-Dosari, M. S., & Gao, X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J, 11(4), 671-681. (2009).

    Alam, M., & Ratner, D. Cutaneous squamous-cell carcinoma. N Engl J Med, 344(13), 975-983. (2001).

    Aqeilan, R. I., Hagan, J. P., Aqeilan, H. A., Pichiorri, F., Fong, L. Y., & Croce, C. M. Inactivation of the Wwox gene accelerates forestomach tumor progression in vivo. Cancer Res., 67(12), 5606-5610. (2007).

    Aqeilan, R. I., Kuroki, T., Pekarsky, Y., Albagha, O., Trapasso, F., Baffa, R., . . . Croce, C. M. Loss of WWOX expression in gastric carcinoma. Clin Cancer Res, 10(9), 3053-3058. (2004).

    Aqeilan, R. I., Trapasso, F., Hussain, S., Costinean, S., Marshall, D., Pekarsky, Y., . . . Croce, C. M. Targeted deletion of Wwox reveals a tumor suppressor function. Proc Natl Acad Sci U S A, 104(10), 3949-3954. (2007).

    Bednarek, A. K., Keck-Waggoner, C. L., Daniel, R. L., Laflin, K. J., Bergsagel, P. L., Kiguchi, K., . . . Aldaz, C. M. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res, 61(22), 8068-8073. (2001).

    Bednarek, A. K., Laflin, K. J., Daniel, R. L., Liao, Q., Hawkins, K. A., & Aldaz, C. M. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res, 60(8), 2140-2145. (2000).

    Bolshakov, S., Walker, C. M., Strom, S. S., Selvan, M. S., Clayman, G. L., El-Naggar, A., . . . Ananthaswamy, H. N. p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinomas. Clin Cancer Res, 9(1), 228-234. (2003).

    Braathen, L. R., Szeimies, R. M., Basset-Seguin, N., Bissonnette, R., Foley, P., Pariser, D., . . . Morton, C. A. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International Society for Photodynamic Therapy in Dermatology, 2005. J Am Acad Dermatol, 56(1), 125-143. (2007).

    Bragonzi, A., Dina, G., Villa, A., Calori, G., Biffi, A., Bordignon, C., . . . Conese, M. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther, 7(20), 1753-1760. (2000).

    Brantsch, K. D., Meisner, C., Schonfisch, B., Trilling, B., Wehner-Caroli, J., Rocken, M., & Breuninger, H. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol, 9(8), 713-720. (2008).

    Buchschacher, G. L., Jr., & Wong-Staal, F. Development of lentiviral vectors for gene therapy for human diseases. Blood, 95(8), 2499-2504. (2000).

    Caamano, J., Zhang, S. Y., Rosvold, E. A., Bauer, B., & Klein-Szanto, A. J. p53 alterations in human squamous cell carcinomas and carcinoma cell lines. Am J Pathol, 142(4), 1131-1139. (1993).

    Chang, N. S., Hsu, L. J., Lin, Y. S., Lai, F. J., & Sheu, H. M. WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med, 13(1), 12-22. (2007).

    Chang, N. S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., & Zevotek, N. Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem, 276(5), 3361-3370. (2001).

    Chang, N. S., Schultz, L., Hsu, L. J., Lewis, J., Su, M., & Sze, C. I. 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene, 24(4), 714-723. (2005).

    Chen, Y. J., Jin, Y. T., Shieh, D. B., Tsai, S. T., & Wu, L. W. Molecular characterization of angiogenic properties of human oral squamous cell carcinoma cells. Oral Oncol, 38(7), 699-705. (2002).

    Choi, S. H., Jin, S. E., Lee, M. K., Lim, S. J., Park, J. S., Kim, B. G., . . . Kim, C. K. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm, 68(3), 545-554. (2008).

    Choosakoonkriang, S., Lobo, B. A., Koe, G. S., Koe, J. G., & Middaugh, C. R. Biophysical characterization of PEI/DNA complexes. J Pharm Sci, 92(8), 1710-1722. (2003).

    Contreras, J. L., Smyth, C. A., Curiel, D. T., & Eckhoff, D. E. Nonhuman primate models in type 1 diabetes research. ILAR J, 45(3), 334-342. (2004).

    Cusack, J. C., Jr., & Tanabe, K. K. Cancer gene therapy. Surg Oncol Clin N Am, 7(3), 421-469. (1998).

    Densmore, C. L., Orson, F. M., Xu, B., Kinsey, B. M., Waldrep, J. C., Hua, P., . . . Knight, V. Aerosol delivery of robust polyethyleneimine-DNA complexes for gene therapy and genetic immunization. Mol Ther, 1(2), 180-188. (2000).

    Dolivet, G., Merlin, J. L., Barberi-Heyob, M., Ramacci, C., Erbacher, P., Parache, R. M., . . . Guillemin, F. In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther, 9(8), 708-714. (2002).

    Dropulic, B. Lentivirus in the clinic. Mol Ther, 4(6), 511-512. (2001).

    Duensing, A., & Duensing, S. Guilt by association? p53 and the development of aneuploidy in cancer. Biochem Biophys Res Commun, 331(3), 694-700. (2005).

    Fabbri, M., Iliopoulos, D., Trapasso, F., Aqeilan, R. I., Cimmino, A., Zanesi, N., . . . Croce, C. M. WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proc Natl Acad Sci U S A, 102(43), 15611-15616. (2005).

    Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., . . . Danielsen, M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A, 84(21), 7413-7417. (1987).

    Fischer, D., Bieber, T., Li, Y., Elsasser, H. P., & Kissel, T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res, 16(8), 1273-1279. (1999).

    Fujiwara, T., Cai, D. W., Georges, R. N., Mukhopadhyay, T., Grimm, E. A., & Roth, J. A. Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst, 86(19), 1458-1462. (1994).

    Gao, X., Kim, K. S., & Liu, D. Nonviral gene delivery: what we know and what is next. AAPS J, 9(1), E92-104. (2007).

    Gaspar, V. M., Correia, I. J., Sousa, A., Silva, F., Paquete, C. M., Queiroz, J. A., & Sousa, F. Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. J Control Release, 156(2), 212-222. (2011).

    Gebhart, C. L., & Kabanov, A. V. Evaluation of polyplexes as gene transfer agents. J Control Release, 73(2-3), 401-416. (2001).

    Godbey, W. T., Wu, K. K., & Mikos, A. G. Poly(ethylenimine) and its role in gene delivery. J Control Release, 60(2-3), 149-160. (1999).

    Goldman, G. The current status of curettage and electrodesiccation. Dermatol Clin, 20(3), 569-578, ix. (2002).

    Goldman, G. D. Squamous cell cancer: a practical approach. Semin Cutan Med Surg, 17(2), 80-95. (1998).

    Goncalves, C., Pichon, C., Guerin, B., & Midoux, P. Intracellular processing and stability of DNA complexed with histidylated polylysine conjugates. J Gene Med, 4(3), 271-281. (2002).

    Goula, D., Remy, J. S., Erbacher, P., Wasowicz, M., Levi, G., Abdallah, B., & Demeneix, B. A. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther, 5(5), 712-717. (1998).

    Guler, G., Uner, A., Guler, N., Han, S. Y., Iliopoulos, D., Hauck, W. W., . . . Huebner, K. The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma. Cancer, 100(8), 1605-1614. (2004).

    Gurudutt, V. V., & Genden, E. M. Cutaneous squamous cell carcinoma of the head and neck. J Skin Cancer, 2011, 502723. (2011).

    Hainaut, P., & Vahakangas, K. p53 as a sensor of carcinogenic exposures: mechanisms of p53 protein induction and lessons from p53 gene mutations. Pathol Biol (Paris), 45(10), 833-844. (1997).

    Halazonetis, T. D., Gorgoulis, V. G., & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science, 319(5868), 1352-1355. (2008).

    Harwood, C. A., Surentheran, T., Sasieni, P., Proby, C. M., Bordea, C., Leigh, I. M., . . . McGregor, J. M. Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. Br J Dermatol, 150(5), 949-957. (2004).

    Iliopoulos, D., Fabbri, M., Druck, T., Qin, H. R., Han, S. Y., & Huebner, K. Inhibition of breast cancer cell growth in vitro and in vivo: effect of restoration of Wwox expression. Clin Cancer Res, 13(1). (2007).

    Iwai, M., Harada, Y., Tanaka, S., Muramatsu, A., Mori, T., Kashima, K., . . . Mazda, O. Polyethylenimine-mediated suicide gene transfer induces a therapeutic effect for hepatocellular carcinoma in vivo by using an Epstein-Barr virus-based plasmid vector. Biochem Biophys Res Commun, 291(1), 48-54. (2002).

    Jeudy, G., Salvadori, F., Chauffert, B., Solary, E., Vabres, P., & Chluba, J. Polyethylenimine-mediated in vivo gene transfer of a transmembrane superantigen fusion construct inhibits B16 murine melanoma growth. Cancer Gene Ther, 15(11), 742-749. (2008).

    Johnson, T. M., Rowe, D. E., Nelson, B. R., & Swanson, N. A. Squamous cell carcinoma of the skin (excluding lip and oral mucosa). J Am Acad Dermatol, 26(3 Pt 2), 467-484. (1992).

    Kang, Y., Zhang, X., Jiang, W., Wu, C., Chen, C., Zheng, Y., . . . Xu, C. Tumor-directed gene therapy in mice using a composite nonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine. BMC Cancer, 9, 126. (2009).

    Kasono, K., Blackwell, J. L., Douglas, J. T., Dmitriev, I., Strong, T. V., Reynolds, P., . . . Krasnykh, V. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res, 5(9), 2571-2579. (1999).

    Kircheis, R., Schuller, S., Brunner, S., Ogris, M., Heider, K. H., Zauner, W., & Wagner, E. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med, 1(2), 111-120. (1999).

    Kircheis, R., Wightman, L., Schreiber, A., Robitza, B., Rossler, V., Kursa, M., & Wagner, E. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther, 8(1), 28-40. (2001).

    Kraemer, K. H., Lee, M. M., & Scotto, J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol, 123(2), 241-250. (1987).

    Krummel, K. A., Denison, S. R., Calhoun, E., Phillips, L. A., & Smith, D. I. The common fragile site FRA16D and its associated gene WWOX are highly conserved in the mouse at Fra8E1. Genes Chromosomes Cancer, 34(2), 154-167. (2002).

    Kwa, R. E., Campana, K., & Moy, R. L. Biology of cutaneous squamous cell carcinoma. J Am Acad Dermatol, 26(1), 1-26. (1992).

    Lai, F. J., Cheng, C. L., Chen, S. T., Wu, C. H., Hsu, L. J., Lee, J. Y., . . . Sheu, H. M. WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin Cancer Res, 11(16), 5769-5777. (2005).

    Lehman, T. A., Modali, R., Boukamp, P., Stanek, J., Bennett, W. P., Welsh, J. A., . . . et al. p53 mutations in human immortalized epithelial cell lines. Carcinogenesis, 14(5), 833-839. (1993).

    Leibovitch, I., Huilgol, S. C., Selva, D., Hill, D., Richards, S., & Paver, R. Cutaneous squamous cell carcinoma treated with Mohs micrographic surgery in Australia I. Experience over 10 years. J Am Acad Dermatol, 53(2), 253-260. (2005).

    Lemkine, G. F., Mantero, S., Migne, C., Raji, A., Goula, D., Normandie, P., . . . Demeneix, B. A. Preferential transfection of adult mouse neural stem cells and their immediate progeny in vivo with polyethylenimine. Mol Cell Neurosci, 19(2), 165-174. (2002).

    Li, D., Yu, H., Huang, H., Shen, F., Wu, X., Li, J., . . . Tang, G. FGF receptor-mediated gene delivery using ligands coupled to polyethylenimine. J Biomater Appl, 22(2), 163-180. (2007).

    Liu, X. Q., Du, J. Z., Zhang, C. P., Zhao, F., Yang, X. Z., & Wang, J. Brush-shaped polycation with poly(ethylenimine)-b-poly(ethylene glycol) side chains as highly efficient gene delivery vector. Int J Pharm, 392(1-2), 118-126. (2010).

    Lu, Y., & Madu, C. O. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin Drug Deliv, 7(1), 19-35. (2010).

    Ludes-Meyers, J. H., Kil, H., Nunez, M. I., Conti, C. J., Parker-Thornburg, J., Bedford, M. T., & Aldaz, C. M. WWOX hypomorphic mice display a higher incidence of B-cell lymphomas and develop testicular atrophy. Genes Chromosomes Cancer, 46(12), 1129-1136. (2007).

    Lungwitz, U., Breunig, M., Blunk, T., & Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm, 60(2), 247-266. (2005).

    Mendenhall, W. M., Amdur, R. J., Hinerman, R. W., Cognetta, A. B., & Mendenhall, N. P. Radiotherapy for cutaneous squamous and basal cell carcinomas of the head and neck. Laryngoscope, 119(10), 1994-1999. (2009).

    Merlin, J. L., Dolivet, G., Dubessy, C., Festor, E., Parache, R. M., Verneuil, L., . . . Guillemin, F. Improvement of nonviral p53 gene transfer in human carcinoma cells using glucosylated polyethylenimine derivatives. Cancer Gene Ther, 8(3), 203-210. (2001).

    Mintzer, M. A., & Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev., 109(2), 259-302. (2009).

    Moffatt, S., Papasakelariou, C., Wiehle, S., & Cristiano, R. Successful in vivo tumor targeting of prostate-specific membrane antigen with a highly efficient J591/PEI/DNA molecular conjugate. Gene Ther, 13(9), 761-772. (2006).

    Mora, R. G., & Perniciaro, C. Cancer of the skin in blacks. I. A review of 163 black patients with cutaneous squamous cell carcinoma. J Am Acad Dermatol, 5(5), 535-543. (1981).

    Morille, M., Passirani, C., Vonarbourg, A., Clavreul, A., & Benoit, J. P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials, 29(24-25), 3477-3496. (2008).

    Nakase, M., Inui, M., Okumura, K., Kamei, T., Nakamura, S., & Tagawa, T. p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther, 4(4), 625-631. (2005).

    Nakayama, S., Semba, S., Maeda, N., Aqeilan, R. I., Huebner, K., & Yokozaki, H. Role of the WWOX gene, encompassing fragile region FRA16D, in suppression of pancreatic carcinoma cells. Cancer Sci, 99(7), 1370-1376. (2008).

    Neu, M., Fischer, D., & Kissel, T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med, 7(8), 992-1009. (2005).

    Nunez, M. I., Ludes-Meyers, J., & Aldaz, C. M. WWOX protein expression in normal human tissues. J Mol Histol, 37(3-4), 115-125. (2006).

    Oh, Y. K., Suh, D., Kim, J. M., Choi, H. G., Shin, K., & Ko, J. J. Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Ther, 9(23), 1627-1632. (2002).

    Oligino, T. J., Yao, Q., Ghivizzani, S. C., & Robbins, P. Vector systems for gene transfer to joints. Clin Orthop Relat Res(379 Suppl), S17-30. (2000).

    Orengo, I., Rosen, T., & Guill, C. K. Treatment of squamous cell carcinoma in situ of the penis with 5% imiquimod cream: a case report. J Am Acad Dermatol, 47(4 Suppl), S225-228. (2002).

    Park, I. K., Cook, S. E., Kim, Y. K., Kim, H. W., Cho, M. H., Jeong, H. J., . . . Cho, C. S. Glucosylated polyethylenimine as a tumor-targeting gene carrier. Arch Pharm Res, 28(11), 1302-1310. (2005).

    Parker, A. L., Newman, C., Briggs, S., Seymour, L., & Sheridan, P. J. Nonviral gene delivery: techniques and implications for molecular medicine. Expert Rev Mol Med, 5(22), 1-15. (2003).

    Pathak, A., Patnaik, S., & Gupta, K. C. Recent trends in non-viral vector-mediated gene delivery. Biotechnol J, 4(11), 1559-1572. (2009).

    Pimenta, F. J., Gomes, D. A., Perdigao, P. F., Barbosa, A. A., Romano-Silva, M. A., Gomez, M. V., . . . Gomez, R. S. Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas. Int J Cancer, 118(5), 1154-1158. (2006).

    Pun, S. H., Bellocq, N. C., Liu, A., Jensen, G., Machemer, T., Quijano, E., . . . Davis, M. E. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem, 15(4), 831-840. (2004).

    Qin, H. R., Iliopoulos, D., Semba, S., Fabbri, M., Druck, T., Volinia, S., . . . Huebner, K. A role for the WWOX gene in prostate cancer. Cancer Res, 66(13), 6477-6481. (2006).

    Ramesh, R., Saeki, T., Templeton, N. S., Ji, L., Stephens, L. C., Ito, I., . . . Roth, J. A. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther, 3(3), 337-350. (2001).

    Ried, K., Finnis, M., Hobson, L., Mangelsdorf, M., Dayan, S., Nancarrow, J. K., . . . Richards, R. I. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet, 9(11), 1651-1663. (2000).

    Rogers, H. W., Weinstock, M. A., Harris, A. R., Hinckley, M. R., Feldman, S. R., Fleischer, A. B., & Coldiron, B. M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol, 146(3), 283-287. (2010).

    Rudolph, R., & Zelac, D. E. Squamous cell carcinoma of the skin. Plast Reconstr Surg, 114(6), 82e-94e. (2004).

    Schroeder, T. L., & Sengelmann, R. D. Squamous cell carcinoma in situ of the penis successfully treated with imiquimod 5% cream. J Am Acad Dermatol, 46(4), 545-548. (2002).

    Schweitzer, V. G. PHOTOFRIN-mediated photodynamic therapy for treatment of early stage oral cavity and laryngeal malignancies. Lasers Surg Med, 29(4), 305-313. (2001).

    Sherr, C. J. Principles of tumor suppression. Cell, 116(2), 235-246. (2004).

    Smeenk, L., & Lohrum, M. Behind the scenes: unravelling the molecular mechanisms of p53 target gene selectivity (Review). Int J Oncol, 37(5), 1061-1070. (2010).

    Steele, R. J., Thompson, A. M., Hall, P. A., & Lane, D. P. The p53 tumour suppressor gene. Br J Surg, 85(11), 1460-1467. (1998).

    Sweeney, P., Karashima, T., Ishikura, H., Wiehle, S., Yamashita, M., Benedict, W. F., . . . Dinney, C. P. Efficient therapeutic gene delivery after systemic administration of a novel polyethylenimine/DNA vector in an orthotopic bladder cancer model. Cancer Res, 63(14), 4017-4020. (2003).

    Tandon, S., Tudur-Smith, C., Riley, R. D., Boyd, M. T., & Jones, T. M. A systematic review of p53 as a prognostic factor of survival in squamous cell carcinoma of the four main anatomical subsites of the head and neck. Cancer Epidemiol Biomarkers Prev, 19(2), 574-587. (2010).

    Tinsley, R. B., Vesey, M. J., Barati, S., Rush, R. A., & Ferguson, I. A. Improved non-viral transfection of glial and adult neural stem cell lines and of primary astrocytes by combining agents with complementary modes of action. J Gene Med, 6(9), 1023-1032. (2004).

    Todd, R., & Wong, D. T. Oncogenes. Anticancer Res, 19(6A), 4729-4746. (1999).

    Tousignant, J. D., Gates, A. L., Ingram, L. A., Johnson, C. L., Nietupski, J. B., Cheng, S. H., . . . Scheule, R. K. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther, 11(18), 2493-2513. (2000).

    Tsukuda, K., Wiewrodt, R., Molnar-Kimber, K., Jovanovic, V. P., & Amin, K. M. An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res, 62(12), 3438-3447. (2002).

    Uduehi, A. N., Stammberger, U., Frese, S., & Schmid, R. A. Efficiency of non-viral gene delivery systems to rat lungs. Eur J Cardiothorac Surg, 20(1), 159-163. (2001).

    Vicennati, P., Giuliano, A., Ortaggi, G., & Masotti, A. Polyethylenimine in medicinal chemistry. Curr Med Chem, 15(27), 2826-2839. (2008).

    Villemejane, J., & Mir, L. M. Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol, 157(2), 207-219. (2009).

    Walker, J. R., McGeagh, K. G., Sundaresan, P., Jorgensen, T. J., Rabkin, S. D., & Martuza, R. L. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum Gene Ther, 10(13), 2237-2243. (1999).

    Wang, Y., Wells, W., & Waldron, J. Indications and outcomes of radiation therapy for skin cancer of the head and neck. Clin Plast Surg, 36(3), 335-344. (2009).

    Winblade, N. D., Nikolic, I. D., Hoffman, A. S., & Hubbell, J. A. Blocking adhesion to cell and tissue surfaces by the chemisorption of a poly-L-lysine-graft-(poly(ethylene glycol); phenylboronic acid) copolymer. Biomacromolecules, 1(4), 523-533. (2000).

    Yamagata, M., Kawano, T., Shiba, K., Mori, T., Katayama, Y., & Niidome, T. Structural advantage of dendritic poly(L-lysine) for gene delivery into cells. Bioorg Med Chem, 15(1), 526-532. (2007).

    Yeh, C. C., Hsieh, H. L., Lee, J., Jan, Y. H., Lai, T. C., Hong, C. Y., . . . Kuo, M. Y. Polyethylenimine-mediated PUMA gene delivery to orthotopic oral cancer: suppression of tumor growth through apoptosis induction in situ and prolonged survival. Head Neck, 33(6), 878-885. (2011).

    Zeng, X., Sun, Y. X., Qu, W., Zhang, X. Z., & Zhuo, R. X. Biotinylated transferrin/avidin/biotinylated disulfide containing PEI bioconjugates mediated p53 gene delivery system for tumor targeted transfection. Biomaterials, 31(17), 4771-4780. (2010).

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE