| 研究生: |
陳立銓 chen, Li-cyaun |
|---|---|
| 論文名稱: |
不同內外直徑圓管在循環彎曲負載下力學行為及皺曲損壞之實驗分析 Experimental Analysis on the Mechanical Behavior and Buckling Failure of Circular Tubes with Different Outside and Inside Diameters under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 循環彎曲 、皺曲 |
| 外文關鍵詞: | Bending, Buckling |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要為實驗探討不同內外直徑圓管(SUS304與316L不銹鋼管)在循環彎曲負載下的力學行為與挫曲損壞行為。本文係運用彎管試驗機與曲率-橢圓化量測器來進行不同的曲率控制循環彎曲負載至挫曲的實驗。實驗試件為三種不同大小的內外直徑與三種不同外徑/壁厚(Do/t)比的316L與SUS 304不銹鋼管。根據實驗結果顯示,彎矩-曲率曲線在曲率控制循環彎曲負載時,316L與SUS 304不銹鋼管皆有循環硬化的現象,而經過一些循環圈數後迴圈會呈現較為穩定的狀態。至於橢圓化-曲率的實驗曲線中顯示,橢圓化會漸增且呈對稱棘齒的變化,且橢圓化會隨著循環圈數一直增加直到薄壁管發生挫曲。此外,從對數座標中的控制曲率和循環彎曲至皺曲次數關係曲線發現,三種不同大小的內外直徑中的三種不同Do/t比的試件皆可獲得三條幾乎是平行的直線。最後,根據所測試的實驗結果,提出針對三種不同大小管徑與三種不同Do/t比的316L與SUS 304圓管,控制曲率和循環彎曲至皺曲次數關係的理論模式。在與實驗的數據比較後顯示,理論分析能合理的描述實驗結果。
This thesis presents an experimental investigation on the mechanical behavior and buckling failure of circular tubes (316L and SUS 304 stainless steel tubes) with different outside and inside diameters subjected to cyclic bending. In this study, the tube bending machine and curvature-ovalization measurement apparatus were used to conduct the curvature-controlled cyclic bending to buckling test. Three different outside and inside diameters with three different outside-diameter / wall-thickness (Do/t) ratios of 316L and SUS 304 stainless steel tubes were tested. It can be observed from the experimental moment-curvature curves that the SUS 304 and 316L stainless steel tubes harden cyclically and become steady after a few cycles for curvature- controlled cyclic bending. As for the ovalization-curvature curve, the ovalization of the tube cross-section increases in a ratcheting manner with the number of cycles. Owing to the progressive accumulation of the ovalization of the tube cross-section during cyclic bending, the tubes buckle eventually. In addition, three almost parallel straight lines were observed from the relationship between the controlled curvature and the number of cycles to produce buckling for three different outside and inside diameters with three different Do/t ratios of steel tubes in the log-log scale. Finally, a theoretical formulation was proposed to simulate the relationship between the controlled curvature and the number of cycles to produce buckling for three different outside and inside diameters with three different Do/t ratios of circular tubes. When compared with the experimental data, the theoretical analysis can properly simulate the experimental result.
1.Shaw, P. K., and Kyriakides, S., 1985, “ Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending, ” International Journal of Solids and Structures, Vol. 21, pp. 1073-1100.
2.Kyriakides, S., and Shaw, P. K., 1987, “ Inelastic Buckling of Tubes under Cyclic Bending, ” Journal of Pressure Vessel Technology, Vol. 109, pp.169-178.
3.Corona, E., and Kyriakides, S., 1988, “ On the Collapse of Inelastic Tubes under Combined Bending and Pressure, ” International Journal of Solids and Structures, Vol. 24, pp. 505-535.
4.Corona, E., and Kyriakides, S., 1991, “ An Experimental Investigation Degradation and Buckling of Circular Tubes under Cyclic Bending and External Pressure , ” Thin-Walled Structure, Vol. 12, pp. 229-263.
5.Ju, G. T., and Kyriakides, S., 1992, “ Bifurcation Buckling Versus Limit Load Instabilities of Elastic-Plastic Tubes under Bending and External Pressure, ” Journal of Offshore Mechanics and Arctic Engineering, Vol. 113, pp. 43-52.
6.Vaze, P., and Corona, E., 1996, “ Degradation and Collapse of Tube under Cyclic Bending, ” Thin Wall Structures, Vol. 31, pp. 325-341.
7.Pan, W. F., Wang, T. R., and Hsu, C. M., 1998, “ A Curvature-Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending, ” Experimental Mechanics, Vol. 38, No.2, pp. 99-102.
8.Pan, W. F., Her, Y. S., 1998, “ Viscoplastic Collapse of Thin-Walled Tubes under Cyclic Bending, ” Journal of Engineering Materials and Technology, Vol. 120, pp. 001-004.
9.Pan, W. F., and Fan, C. H., 1998, “ An Experimental Study on the Effect of Curvature-Rate at Preloading Stage on Subsequent Creep or Relaxation of Thin-Walled Tubes under Pure Bending, ” JSME International Journal, Series A, Vol. 41, No.4, pp. 525-531.
10.Lee, K. L., Pan, W. F., and Kuo, J. N., 2001, “ The Influence of the Diameter-to-Thickness Ratio on the Stability of Circular Tubes under Cyclic Bending, ” International Journal of Solids and Structures, Vol.38, pp. 2401-2413.
11.Lee, K. L., and Pan, W. F., 2001, “ Viscoplastic Collapse of Titanium Alloy Tube under Cyclic Bending, ” International Journal of Structural Engineering and Mechanics, Vol. 11, No.3, pp. 315-324.
12.Elchalakani, M., Zhao, X. L., Grzebieta, R.H., 2001, “ Concrete-filled circular steel tubes subjected to pure bending, ” Journal of Constructional Steel Research, Vol. 57 pp. 1141-1168.
13.Lee, K. L., and Pan, W. F., 2002, “ Pure Bending Creep of SUS 304 Stainless Steel Tuber, ” Steel and Composite Structures, Vol. 2, No.6, pp. 461-474.
14.Lee, K. L., Pan, W. F., and Hsu, C. M., 2004, “ Experimental and Theoretical Evaluations of the Effect between Diameter-to-Thickness Ratio and Curvature-Rate on the Stability of Circular Tubes under Cyclic Bending , ” JSME International Journal , Vol. 47, No.2, pp. 212-222.
15.Lee, K. L., Shie, R. F., and Chang, K. H., 2005, “ Experimental and Theoretical Investigation of the Response and Collapse of 316L Stainless Steel Tubes Subjected to Cyclic Bending, ” JSME International Journal, Vol. 48, No.3, pp. 155-162 .
16.郭如男,1999,「不同外徑/厚度比薄壁管在循環彎曲負載下皺曲行為之研究」,國立成功大學工程科學研究所碩士論文,台南
17.李國龍,2000,「圓管在不同外徑/壁厚比及不同曲度率循環彎曲負載下皺曲行為之研究」,國立成功大學工程科學研究所博士論文,台南
18. 陳信嘉,2006,「不同內直徑及外直徑SUS 304不銹鋼管在循環彎曲負載下力學行為及皺曲損壞之實驗分析」,國立成功大學工程科學研究所碩士論文,台南
19.林文凱,2006,「不同外徑/ 壁厚比316L不銹鋼管在循環彎曲負載下力學行為及皺曲損壞之實驗分析」,國立成功大學工程科學研究所碩士論文,台南