| 研究生: |
劉宗儒 Liu, Tsung-Ju |
|---|---|
| 論文名稱: |
應變速率對316L不鏽鋼粉末冶金件撞擊性能的影響 The Strain Rate Dependence of the Impact Properties of Type 316L Powder Compacts |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 霍普金森高速撞擊試驗機 、316L不銹鋼粉末冶金件 、絕熱剪切帶 、應變速率 |
| 外文關鍵詞: | split-Hopkinson bar, Type 316L powder compacts, adiabatic shear band, strain rate |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究主要是利用霍普金森高速撞擊試驗機,來探討應變速率對316L不銹鋼粉末冶金件撞擊性能的影響。變形實驗條件於常溫25℃下進行,應變速率為2700s-1到7500s-1,變形後之試件利用光學顯微鏡(OM)以及掃描式電子顯微鏡(SEM)進行微觀與破裂分析,再將實驗所得到數據和微觀觀察結果進行分析,以釐清應變速率對動態機械特性及相對微觀組織變化之影響,再引用一合適之材料構成方程式,來描述316L不銹鋼粉末冶金件的高速撞擊之塑變行為,以做為工程模擬與分析之用。
由實驗的數據分析之結果,可知應變速率和應變量是影響316L不銹鋼粉末冶金件的機械性質之重要因素。此種材料的塑流應力值、應變速率敏感性係數皆會隨著應變速率之增加而上升,而熱活化體積及加工硬化係數則有相反之趨勢。最後,藉由Khan-Huang-Liang模式之構成方程式,再加入理論溫升量之修正項,可以很準確的用來描述316L不銹鋼粉末冶金件於高速撞擊下之塑變行為。從破壞形貌觀察,可以知道材料若受到高速衝擊時,會有絕熱剪切帶的產生,而且可以發現在剪切帶裡有微空孔,並藉由空孔之聚集連結而造成材料之破壞發生;在破斷面觀察上,可以發現到主要是以韌窩組織的形貌分佈,故屬於延性破壞,而韌窩形貌會隨著應變速率的變化而有不同的改變。
A Split-Hopkinson bar is used to investigate the strain rate influence of the impact properties of Type 316L powder compacts. Mechanical testing is performed at room temperature under strain rates ranging from 2700s-1 to 7500s-1. Optical microscopy and scanning electron microscopy techniques are used to analyze the fracture and microstructure characteristics of the deformed specimens to determine the relation between mechanical and microstructural properties. Experimental results indicate that strain and strain rate influence mechanical properties of Type 316L powder compacts. At room temperature, flow stress and strain rate sensitivity increase with increasing strain rate, but activation volume and work hardening coefficient decrease. From fractographic analysis, we find fracture occurs after shear band formation. We also find dimple characteristics on fracture surfaces. The Khan-Huang-Liang constitutive equation with the experimentally determined specific material parameters successfully describes the flow behaviour of Type 316L Powder Compacts for the tested conditions.
1.D. Peckner and I. M. Bernstein, Handbook of Stainless Steels, McGraw-Hill Publishing Company, 1977.
2.汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,頁3,民國八十三年。
3.蘇敏賢,漫談不銹鋼粉末冶金,粉末冶金,頁15-33, 民國七十二年。
4.E. Angelini, P. Piccardo, M. R. Pinasco and F. Rosalbino, “Investigation of the Corrosion Behaviour of AISI 316L Stainless Steel Sintered in Different Conditions,” Metallurgia Italiana, Vol. 91, No. 5, pp. 37-45, 1999.
5.L. Castro, S. Merino, B. Levenfeld, A. Varez, J.M. Torralba, “Mechanical Properties and Pitting Corrosion Behaviour of 316L Stainless Steel Parts Obtained by a Modified Metal Injection Moulding Process,” Journal of Materials Processing Technology, Vol. 143-144, No. 1, pp. 397-402, 2003.
6.E. Otero, A. Pardo, M.V. Utrilla, F.J. Perez and C. Merino, “Corrosion Behaviour of AISI 304L and 316L Stainless Steel Prepared by Powder Metallurgy in the Presence of Organic Acids1,” Corrosion Science, Vol. 39, No. 3, pp. 453-463, 1997.
7.T. S. Yoon, Y. H. Lee, S. H. Ahn, J. H. Lee and C. S. Lee, “Effects of Sintering Conditions on the Mechanical Properties of Metal Injection Molded 316L Stainless Steel,” ISIJ International, vol. 43, No. 1, pp. 119-126, 2003.
8.A. Miller, Y. Estrin and X. Z. Hu, “Magnetic Force Microscopy of Fatigue Crack Tip Region in a 316L Austenitic Stainless Steel,” Scripta materialia, Vol. 47, No. 7, pp. 441-446, 2002.
9.W. Y. Maeng and M. H. Kim, “Comparative Study on the Fatigue Crack Growth Behavior of 316L and 316LN Stainless Steel: Effect of Microstructure of Cycle Plastic Strain Zone at Crack Tip,” Journal of Nuclear Materials, Vol. 282, No. 1, pp. 32-39, 2000.
10.X. Feaugas and H. Haddou, “Grain-size Effects on Tensile Behavior of Nickel and AlSl 316L Stainless Steel,” Metallurgical and Materials Transactions A, Vol. 34A, No. 10, pp. 2329-2340, 2003.
11.H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,” Proceedings of the Physical Society, Vol. 62. pp. 676-699, 1949.
12.B. M. Butcher and C. H. Karnes, “Strain Rate Effects in Metals,” Journal of Applied Physics, Vol. 37, pp. 402-411, 1964.
13.F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates,” Experimental Mechanics, Vol. 6, pp. 395-402, 1966.
14.Y. Leroy and M. Ortiz, In Mechanical Properties of Materials at High Rates of Strain, (ed. J. Harding), pp. 257-265, 1989.
15.D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Metals Applicable at High Strain Rate,” Journal of Applied Physics, Vol. 51, No. 3, pp. 1498-1504, 1980.
16.G. F. Bocchini, “Influences of Porosity on The Characteristics of Sintered Materials,” Metal Powder Report, Vol. 41, No. 11, pp. 829-832, 1986.
17.D. N. Lee and H. S. Kim, “Plastic Yield Behaviour of Porous Metals,” Powder Metallurgy, Vol. 35, No. 4, pp. 275-279, 1992.
18.I. Bertilsson and B. Karlsson, “Mechanical Properties of Sintered Steels,” Scandinavian Journal of Metallurgy, Vol. 11, No. 6, pp. 267-275, 1982.
19.R. J. Bourcier, D. A. Koss, R. E. Smelser and O. Richmond, “The Influence of Porosity on The Deformation and Fracture of Alloy,” Acta Metallurgica, Vol. 34, No. 12, pp. 2443-2453, 1986.
20.M. G. da Silva and K. T. Ramesh, “The Rate-Dependent Deformations of Porous Pure Iron,” International Journal of Plasticity, Vol. 13, No.6-7, pp. 587-610, 1997.
21.J. Duffy, Y. C. Chi, “On the Measurement of Local Strain and Temperature during the Formation of Adiabatic Shear Bands,” Materials Science and Engineering, Vol. A157, pp. 195-210, 1992.
22.S. C. Liao, J. Duffy, “Adiabatic Shear Bands in A Ti-6Al-4V Titanium Alloy,” Journal of the Mechanics and Physics of Solids, Vol. 46, No. 11, pp. 2201-2231, 1998.
23.K. A. Hartley, J. Duffy and R. H. Hawley, “Measurement of the Temperature Profile during Shear Band Formation in Steels Deforming at High Strain Rates,” Journal of the Mechanics and Physics of Solids, Vol. 35, No. 3, pp. 283-301, 1987.
24.A. Marchand, J. Duffy, “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel,” Journal of the Mechanical Physical Solids, Vol. 36, No. 3, pp. 251-283, 1988.
25.Y. B. XU, Y. L. Bai, Q. Xue and L. T. Shen, “Formation, Microstructure and Development of the Localized Shear Deformation in Low-carbon Steels,” Acta Materialia, Vol. 44, No. 5, pp. 1917-1926, 1996.
26.王遐,粉末製造與傳統粉末加工成形,全華科技圖書股份有限公司,頁4-7,民國八十一年。
27.D. Peckner and I. M. Bernstein, Handbook of Stainless Steels, McGraw-Hill Publishing Company, p. 29-2 1977.
28.R. M. German, Powder Metallurgy Science, Metal powder Industries Federation, Princeton, NJ, pp. 27-79, 1994.
29.王遐,粉末製造與傳統粉末加工成形,全華科技圖書股份有限公司,頁60-68,民國八十一年。
30.R. M. German, Powder Metallurgy Science, Metal powder Industries Federation, Princeton, NJ, pp. 84-125, 1994.
31.汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,頁18-27,民國八十三年。
32.R. M. German, Powder Metallurgy Science, Metal powder Industries Federation, Princeton, NJ, pp. 157-184, 1994.
33.汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,頁97-138,民國八十三年。
34.P. J. James, Isostatic Pressing Technology, Applied Science Publishers, London, pp. 5-25, 1983.
35.R. M. German, Powder Metallurgy Science, Metal powder Industries Federation, Princeton, NJ, pp. 243-259, 1994.
36.汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,頁199-205,民國八十三年。
37.D. L. Dyke and H. D. Ambs, Powder Metallurgy: Applications, Advantages and Limitations, edited by E. Klar, ASM, Ohio, 1983.
38.A. Stosuy and R. R. Holmes, “Sintered Type 316L Stainless Steel Its Properties and Processing,” Metal Progress, Vol. 91, pp.81-85, 1967.
39.U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
40.M. A. Meyers, Elastic Waves, Dynamics Behavior of Materials, Jhon Wiely & Son, pp. 23-65, 1994.
41.J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk, D. R. Curran, Impact Dynamics, John Wiley & Sons, p.287, 1981.
42.J. D. Campbell, “Dynamic Plasticity-Macroscopic and Microscopic Aspects,” Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
43D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
44.J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
45.U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
46.W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, No. 4, pp. 1863-1869, 1967.
47.J. D. Campbell and A. R. Dowling, “Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of the Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
48.Y. Bai and B. Dodd: Adiabatic Shear Localization, Pergamon Press, Oxford, pp. 1-3, 1992.
49.R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications,” pp. 22-26, 1980.
50.U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, p. 199, 1971.
51.G. E. Dieter, Workability Testing Techniques, Metals Park, Oh: ASM, pp. 57-59, 1984.
52.M. L. Lovato, and M. G. Stout, “Compression Testing Techniques to Determine the Stress/Strain Behaviour of Metals Subject to Finite Deformation,” Metallurgical Transaction A, Vol. 23A, pp. 935-951, 1992.
53.U. Lindstedt, B. Karlsson, and R. Masini, “Influence of Porosity on Deformation and Fatigue Behavior of P/M Austenitic Stainless Steel,” International Journal of Powder Metallurgy, Vol. 33, No. 8, pp. 49-61, 1997.
54.黃忠良,多孔材料學,復漢出版社,頁174-190,民國八十八年。
55.黃忠良,多孔材料學,復漢出版社,頁191-198,民國八十八年。
56.B. Budiansky, "Thermal and Thermoelastic Properties of Isotropic Composites," Journal of Composite Materials, Vol. 4, pp. 286-295, 1970.
57.H. N. Han, Y. Lee, K. H. Oh and D. N. Lee, “Analysis of Hot Forging of Porous Metals,” Materials Science and Engineering, Vol. A206, No. 1, pp. 81-89, 1996.
58.J. Zheng and Z. P. Wang, “Evolution of Voids in Ductile Porous Materials at High Strain Rate,” Acta Mechanica Solida Sinica, Vol. 7, No. 3, pp. 191-202, 1994.
59.A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I – Yield Criteria and Flow Rules for Porous Ductile Media,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 99 Ser H, No. 1, pp. 2-15, 1977.
60.V. Tvergaard, “Influence of Voids on Shearband Instabilities under Plane Strain Conditions,” International Journal of Fracture, Vol. 17, No. 4, pp. 389-407, 1981.
61.V. Tvergaard and A. Needleman, “Effect of Material Rate Sensitivity on Failure Modes on the Charpy V-Notch Test,” Journal of Mechanics and Physics of Solids, Vol. 34, No. 3, pp. 213-241, 1986.
62.W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.
63.G. R. Johnson and R. W. Cook, in Proceeding of Seventh International Symposium on Ballistics (The Netherlands, 1983), pp. 541
64.F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
65.F. J. Zerilli and R. W. Armstrong, “The Effect of Dislocation Drag on the Stress-Strain Behavior of F.C.C Metals,” Acta Metallurgica et Materialia, Vol. 40, No. 8, pp. 1803-1808, 1992.
66.F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels,” High strain rate effects on polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, ASME 1995.
67.A. S. Khan and H. Zhang, “Mechanically Alloyed Nanocrystalline Iron and Copper Mixture: Behavior and Constitutive modeling over A Wide Range of Strain Rate,” International Journal of Plasticity, Vol. 16, No. 12, pp.1477-1492, 2000.
68.R. Liang and A. S. Khan, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over A Wide Range of Strain Rates and Temperatures,” International Journal of Plasticity, Vol. 15, No. 9, pp.963-980, 1999.
69.G. E. Dieter, “Thermally Activated Deformation,” Mechanical Metallurgy, pp. 310-315, 1988.
70.E. Bayraktar and S. Altintas, “Some Problems in Steel Sheet Forming Processes”, Journal of Materials Processing Technology, Vol. 80-81, pp. 83-89, 1998.
71.S. I. Kim and Y. C. Yoo, "Dynamic Recrystallization Behavior of AISI 304 Stainless Steel," Materials Science and Engineering A, Vol. 311, No. 1-2, pp. 108-113, 2001.
72.V. F. Nesterenko, M. A. Meyers, J.C. Lasalvia, M. P. Bondar, Y. J. Chen and Y. L. Lukyanov, "Shear Localization and Recrystallization in High-Strain, High-Strain Rate Deformation of Tantalum," Materials Science and Engineering A., Vol. 229, No. 1-2, pp. 23-41, 1997.
73.B. Derby, "The Dependence of Grain Size on Stress During Dynamic Recrystallization," Acta Metallurgica et Materialia, Vol. 39, No. 5, pp. 955-962, 1991.
74.T. Sakai and J. J. Jonas, "Dynamic Recrystallization: Mechanical and Microstructural Considerations," Acta Metallurgy, Vol. 32, No. 2, pp. 189-209, 1984.
75.M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, “Scaling Rules for Adiabatic Shear,” in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L. E. Murr, K. P. Staudhammer and M. A. Meyers) pp. 675-688, Marcel Dekker Inc., New York, 1986.