簡易檢索 / 詳目顯示

研究生: 黃聖淇
Huang, Sheng-Chi
論文名稱: 邊界元素法分析二維薄層異相複材之熱效應
Boundary Element Analysis of Two-Dimensional Thin Anisotropic Composites with Thermal Effects
指導教授: 夏育群
Shia, Yu-Chiun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 邊界元素法二維異向熱彈性體熱效應正規化近似奇異積分
外文關鍵詞: boundary element method, two-dimensional anisotropic thermoelasticity, thermal effect, regularization, thin composites
相關次數: 點閱:105下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討的問題是對於二維全異向熱彈性體,處理全異向薄層複材之熱彈性體受熱效應力,而當在薄層幾何體上相對表面非常接近時,會發生源點逼近邊界元素的情形,也就是將產生眾所皆知的近似奇異積分問題(nearly singular integration),造成無法正確計算數值積分,便無法分析薄層複材異相熱彈性體。對於熱彈性來說,由於熱效應的關係導致面積分存在於邊界積分方程式中,為了避免直接積分,面積分已經分析轉換為邊界積分,在論文中,近似奇異積分由分部積分的方法正規化,此外,在數值計算中出現了額外的困難就是與三角函數相關的被積函數,當近似奇異積分中的狀況下,被積函數在源點投影點附近產生劇烈的波動,所以會增加數值分析的難度,對於此問題由在投影點附近劃分子區域的方法來克服,並且需要增加高斯點的數量,最後再利用修改完成的BEM程式來分析幾種範例,比較邊界元素法與ANSYS也就是有限元素法的結果都完全一致。

    The main study of the thesis is for applying the boundary element method (BEM) to study the two-dimensional anisotropic thermoelasticity of composites when layers of the structures are very thin. Under the circumference when the source point on one surface is very close to integration elements on the opposite surface of thin layers, the well known issue of “nearly singular integration” in the BEM will arise, causing instability in numerical integrations. As a result, the BEM will fail to properly analyze the thermoelaticity of thin anisotropic composites. For thermoelaticity, the thermal effect will lead to a domain integral in the boundary
    integral equation. For avoiding direct integration, the domain integral has been analytically transformed to surface ones. In the thesis, the nearly singular integrals are regularized by the scheme of integration by parts. Furthermore, an additional numerical difficulty arises in numerically evaluating the transformed boundary
    integrals whose integrands are associated with trigonometric functions. Under the condition of nearly singular integration, the integrands shall fluctuate drastically near the projection point of the source, posing difficulty in numerical evaluation. This
    problem is overcome by the approach of domain sub-division near the projection point and moreover, increased numbers of Gauss points are required. A few
    benchmark examples are investigated by the implemented BEM code. All BEM results turn out to agree with those obtained by ANSYS, based on the finite element method.

    目錄 中文摘要 ............. I 誌謝 ............. VIII 目錄 ............ IX 表目錄 ............ XI 圖目錄 ........... XIII 第一章 導論 .......... 1 1.1 前言 ........... 1 1.2 研究動機及目的 ......... 3 1.3 文獻回顧 ........... 4 1.4 研究內容簡介 ......... 4 第二章 理論回顧 .......... 6 2.1 邊界積分方程式 ......... 6 2.2 二維異向熱場分析 ........ 9 2.3 格林定理用於二維熱彈邊界積分式 ...... 13 2.4 體積分之邊界積分轉換 ........ 15 2.5 傅立葉級數轉換 ........ 17 2.6 函數Qijk,t以傅立葉級數表示 ....... 20 第三章 邊界積分式的正規化 ........ 24 3-1 Uij之邊界積分式正規化於扭曲座標體系 ... 24 3-2 Qijk,t之邊界積分式正規化於扭曲作標體系 .... 27 3-3 體積分直接轉換邊界積分之正規化介紹 .... 32 3-4 邊界積分應用於分析薄層之正規化 .... 33 第四章數值範例 .......... 42 4.1 範例一、矩形板(溫度函數) ....... 42 4.2 範例二、薄層疊層板(真實溫度) ..... 45 4.3 範例三、薄層疊層板含膠合層(真實溫度) ..... 46 4.4 範例四、同心圓薄層疊層板 (真實溫度) ..... 52 4.5 範例五、同心圓薄層疊層板含膠合層 (真實溫度) ... 54 第五章結論與未來展望 .......... 70 參考文獻 .......... 71

    1.Y.C.Shiah, C.L.Tan(1999)"Exact boundary integral transformation of the
    thermoelastuc domain integral in BEM for general 2D anisotropic"
    Computational Mechanics 23(1999) 87-96
    2.Zhang,Tan and Afagh (1996)"Treatment of body force volume integrals in
    Bem by exact transformation for 2D anisotropic elasticity"International Journal
    For Numerical Methods In Engineer VOL. 40, 89-109 (1997)
    3.夏育群、陳春來,「邊界元素法之入門介紹」,高立圖書有限公司,中
    華民國93 年12 月15 日
    4.Shiah, Y.C. and Tan, C.L., 1999b."Determination of interior point stresses in
    two-dimensional BEM thermoelastic analysis of anisotropic bodies"Int. J.
    Solids Struct 37, 809-829.
    5.Shiah, Y.C. and Tan, C.L., 1999a. "Exact boundary integral transformation
    of the thermoelastic domain integral in BEM for general 2D anisotropic
    elasticity" Computational Mechanics 23, 87-96.
    6.Y.C. Shiah*, Kuo-Wei Hsu , Two-dimensional analysis of interlaminar
    stresses in thin anisotropic composites subjected to inertial loads by
    regularized boundary integral equation , Composites, Part B- Engineering ,
    2018
    7. Shiah YC, Tan CL (1998) BEM treatment of two-dimensional anisotropic
    ® eld problems by Direct Domain Mapping, Engng. Analysis with Boundary
    Elements 20:347±351
    8. Y.C. Shiah* and Sheng-Hung Wang , New Domain Integral Transformation
    in the Boundary Element Analysis for 2D Anisotropic Thermoelasticity , J.Eng. Mech , 2016 , 142(9) , pp.1-9 (SCI)
    9. Y.C. Shiah*, Chung-Lei Hsu, and Chyanbin Hwu , Analysis of 2D
    anisotropic thermoelasticity involving constant volume heat source by directly
    transformed boundary integral equation , Engineering Analysis of Boundary
    Elements , 2018 , Volume 93 , Pages 44-52 (Other)
    10. Y.C. Shiah, Wen-Sheng Hwang, and Guan-Chyun Shiah, BEM stress
    analysis for thin multilayered composites subjected to inertial loads, Journal of
    Composite Materials, 2009; 43(4), 349-366.
    11.Y.C. Shiah, Analysis of thermoelastic stress-concentration around oblate
    cavities in three-dimensional generally anisotropic bodies by the boundary
    element method, International Journal of Solids and Structures, 2016; 81,
    350-360.
    12.Y.C. Shiah1*, Sheng-Chi Huang1, M.R. Hematiyan2Efficient 2D Analysis
    of Interlaminar Thermal Stresses in Thin Multi-layered Anisotropic
    Composites by a Regularized Boundary Integral Equation
    13.Yu. V. Tokovyy, C.C. Ma, Three-dimensional elastic analysis of
    transversely-isotropic composites, Journal of Mechanics, 2017; 33(6), 821-830.
    14.Dhaliwal, R. and Sherief, H., Generalized thermoelasticity for anisotropic
    media, Quarterly of Applied Mathematics, 1980; 33, 1-8.
    15.L.C. Bian, W. Liu, J. Pan, Probability of debonding and effective elastic
    properties of particle-reinforced composites, Journal of Mechanics, 2017; 33(6),
    789-796.
    16.M.R. Lajczok, New approach in the delamination of interlaminar shear
    stresses from the results of MSC/NASTRAN, Computers and Structures, 1986;
    24, 651-656.
    17.S. Tolson, N. Zabaras, Finite element analysis of progressive failure in
    laminated composite plates, Computers and Structures, 1991; 38, 361-376.
    18.K.H. Lo, R.M. Christensen, E.M. Wu, Stress solution determination for
    higher order plate theory, International Journal of Solids and Structures, 1978;
    14, 655-662.
    19.T. Kant, K. Swaminathan, Estimation of transverse/interlaminar stresses in
    laminated composites- a selective review and survey of current developments,
    Journal of Composites, 2000; 49, 65-75.
    20.Y.C. Shiah, Nguyen Anh Tuan, M.R. Hematiyan, Direct transformation of
    the volume integral in the boundary integral equation for treating three dimensional steady-state anisotropic thermoelasticity involving volume heat source, International Journal of Solids and Structures, 2018; 143, 287-297.
    21.Y.C. Shiah and M.R. Hematiyan, Interlaminar stresses analysis of three 88 dimensional composite laminates by the boundary element method”, Journal of Mechanics, 2018; 34(6), 829-837.
    22.Y.C. Shiah, Analysis of thermoelastic stress-concentration around oblate
    cavities in three-dimensional generally anisotropic bodies by the boundary
    element method, International Journal of Solids and Structures, 2016; 81, 350-
    360.
    23.Y.C. Shiah, Shang-Yu Ye, New treatment of the self-weight and the inertial
    effects of rotation for the BEM formulation of 2D anisotropic solids,
    Engineering Analysis with Boundary Elements, 2016; 73, 170–180.
    24.P.H. Wen, M.H. Alliabadi, D.P. Rooke. A new method for transformation of
    domain integrals to boundary integrals in boundary element method.
    Communications in Numerical Methods in Engineering, 1998; 14, 1055–65.
    25.Ji Lin ,Wen Chen, Fuzhang Wang, A new investigation into regularization
    techniques for the method of fundamental solutions, Mathematics and
    Computers in Simulation, 2011; 81(6), 1144-1152.
    26.Ji Lin, Wen Chen, C.S. Chen, Numerical treatment of acoustic problems
    with boundary singularities by the singular boundary method. Journal of Sound
    and Vibration, 2014; 333(14), 3177-3188.
    27.J. Lin, C. Zhang, L. L. Sun, and J. Lu, Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary
    method, Advances in Applied Mathematics and Mechanics, 2018; 10( 3), 322–
    342.
    28.Y.C. Shiah, Wen-Sheng Hwang, and Guan-Chyun Shiah, BEM stress
    analysis for thin multilayered composites subjected to inertial loads, Journal of
    Composite Materials, 2009; 43(4), 349-366.
    29.S.G. Lekhnitskii, Theory of elasticity of an anisotropic body. Mir Publishers,
    Moscow, 1981.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE