| 研究生: |
沈甯堯 Shen, Ning-Yao |
|---|---|
| 論文名稱: |
以流體化床反應器探討轉爐石去除純氧燃燒煙氣中二氧化碳 Sorption of Carbon Dioxide from Oxy-fuel Combustion by Basic Oxygen Furnaces Slag in a Fluidized Bed Reactor |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 二氧化碳捕獲 、流體化床 、純氧燃燒 、吸收劑 、碳酸化 、轉爐石 |
| 外文關鍵詞: | CO2 capture, fluidized bed reactor, oxy-fuel combustion, sorbent, carbonation, BOF slag |
| 相關次數: | 點閱:123 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著經濟的成長及科技的進步,化石燃料的使用大量增加,加劇了大氣中二氧化碳濃度、溫室效應及全球氣候變遷的速度。為了有效解決這些問題,各界開始發展各種二氧化碳捕獲與封存技術(CCS)以降低二氧化碳的排放量。其中純氧燃燒被視為具有發展潛力的系統,此系統有濃縮二氧化碳的技術,而高濃度之二氧化碳具有可以提高捕獲效率、降低成本以及設備易改建等優勢。本研究室以高溫固體吸收劑流體化床系統進行二氧化碳的去除。以轉爐石作為吸收劑,不僅能降低吸收劑成本也能增加轉爐石之再利用性。因此本研究模擬純氧燃燒之煙道器條件,探討在流體化床系統中高溫下吸收劑的利用及二氧化碳的去除效率。
本研究操作參數及研究成果分為以下部分說明:
1. 各種溫度下的最小流體化速度實驗結果與經驗模式皆有相同的趨勢存在,隨著溫度上升,其最小流體化速度都隨之減小。本實驗最小流體化速度值高於經驗公式估計值,是因為經驗公式是以室溫為基礎演算,而實驗則是在高溫下進行。
2. 根據ICP及XRD定性及定量結果顯示,未鍛燒的轉爐石主要是以氫氧化鈣及少量氧化鈣的形式存在,鍛燒後氧化鈣含量明顯上升,主要是因為氫氧化鈣經高溫鍛燒後轉化為氧化鈣。
3. 從TGA結果可知,150-300 μm轉爐石的利用率是17.6%; 75-106 μm轉爐石為9.5%。經800℃鍛燒後150-300 μm轉爐石的利用率為24.8%; 75-106 μm轉爐石為24.5%。
4. 在流體化床系統中,本研究以各種操作參數進行二氧化碳捕獲的實驗。結果顯示,在大粒徑轉爐石的實驗中二氧化碳濃度的變化對於二氧化碳的吸收有顯著的影響,由於二氧化碳濃度越高具有更好的擴散能力;經鍛燒後,水氣濃度的影響增加,是因為較高濃度的水氣可能在高溫下可以活化氧化鈣成為氫氧化鈣。在小粒徑的實驗中發現,提高水氣濃度則會降低轉爐石的利用率,原因為水氣會增加顆粒間的凝聚力,進而形成層流的情況使二氧化碳擴散能力降低。在流體化床系統中,由大粒徑轉爐石之利用率表現較佳。
5. 在不同二氧化硫濃度下的實驗中可以發現,二氧化硫的存在亦會降低轉爐石於流體化床中之利用率。提高二氧化硫之濃度,發現轉爐石利用率有明顯下降從71.6%下降到20.5%,推測為二氧化硫毒化了轉爐石,使其無法提供更多活性位置進行碳酸化反應。
6. XRD,SEM,EDS,Mapping及FTIR分析結果顯示碳酸化前和碳酸化後轉爐石之各項特性分析。也證實了轉爐石在流體化床中吸收二氧化碳最終產物是碳酸鈣。
7. 由反應動力研究發現,第一型衰退模式較適合用來描述轉爐石於流體化床中碳酸化之結果,其回歸分析顯示在不同條件下之實驗貫穿曲線與模擬結果相符合。
In recent years, the increasing concentration of CO2 in the atmosphere is resulted from the use of huge amounts of fossil fuels with the progress of the growth of economy and technology. That has also exacerbated the greenhouse effect and global climate change. Carbon capture and sequestration technologies are therefore under developed to effectively solve these issues. The oxy-fuel combustion is considered as a sustainable and potential system which can concentrate CO2, increase the capture efficiency, reduce the processing cost and easy alterations. This study used the Basic Oxygen Furnaces (BOF) slag to be the sorbent to remove CO2 with a laboratory fluidized bed reactor. Utilizing BOF slag as sorbent not only reduces the cost of the traditional sorbent but also increases the recyclability of the waste. Therefore, this study simulated the condition of the oxy-fuel combustion to removal CO2 with BOF slag in a fluidized bed reactor at high temperature.
Results of this study are described as follows:
1. The minimum fluidized velocity at various temperatures have the same trend for empirical model prediction and experimental results. The minimum fluidized velocity values calculated from the empirical equations are slightly different from the values determined in this study, due to the different basic temperature.
2. According to the results by using ICP and XRD analysis, the calcium hydroxide contents of the BOF slags of 150-300 μm and 75-106 μm are 34.5% and 36%, respectively; the calcium oxide contents of the slags are 10.6% and 2%, respectively; the calcium carbonate contents are 6.5% and 7.3%, respectively.
3. From TGA analysis, the utilizations of the BOF slags of 150-300 μm and 75-106 μm are 17.6% and 9.5%, respectively. The utilizations of the calcined BOF slags of 150-300 μm and 75-106 μm are 24.8% and 24.5%, respectively.
4. After the experiment of BOF slag utilization for CO2 capture in a fluidized bed reactor at various operating conditions, it can be found that the concentration of CO2 has significant impact for the sorbent utilization due to the diffusion capacity. The water vapor may activate CaO to become Ca(OH)2 for the better utilization by the larger calcined BOF slag. However, 10% water vapor may cause an increasing cohesion between particles to form a laminar flow for the smaller calcined BOF slag. Therefore, its sorbent utilization declines. Besides, the larger size of BOF slags, the higher of the utilization.
5. The impact of sulfur-containing flue gas shows that the overall utilization of BOF slag decreases from 71.6% to 20.5%. The results are speculated that SO2 will poison the BOF slag and occupy active sites.
6. The results of XRD, SEM, EDS, Mapping and FTIR analyses present the element composition, structure change and bonding for BOF slags before and after carbonation. It confirms that the final carbonated product is calcium carbonate.
7. The type I deactivation model is in good agreement with the experimental data of carbonation of BOF slag at various operating conditions.
Abanades, J.C., Alvarez, D., 2003. Conversion limits in the reaction of CO2 with lime. Energy & Fuels 17, 308-315.
Barnard, T.W., Crockett, M.I., Ivaldi, J.C., Lundberg, P.L., Yates, D.A., Levine, P.A., Sauer, D.J., 1993. Solid-state detector for ICP-OES. Analytical chemistry 65, 1231-1239.
Baruch, M.F., Pander III, J.E., White, J.L., Bocarsly, A.B., 2015. Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy. ACS Catalysis 5, 3148-3156.
Blamey, J., Manovic, V., Anthony, E.J., Dugwell, D.R., Fennell, P.S., 2015. On steam hydration of CaO-based sorbent cycled for CO2 capture. Fuel 150, 269-277.
Blamey, J., Zhao, M., Manovic, V., Anthony, E.J., Dugwell, D.R., Fennell, P.S., 2016. A shrinking core model for steam hydration of CaO-based sorbents cycled for CO2 capture. Chemical Engineering Journal 291, 298-305.
Brenner, H., 2013. Gas-liquid-solid fluidization engineering. Butterworth-Heinemann.
Buhre, B., Elliott, L., Sheng, C., Gupta, R., Wall, T., 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in energy and combustion science 31, 283-307.
Chen, H., Zhang, P., Duan, Y., Zhao, C., 2016. CO2 capture of calcium based sorbents developed by sol–gel technique in the presence of steam. Chemical Engineering Journal 295, 218-226.
Chen, L., Yong, S.Z., Ghoniem, A.F., 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science 38, 156-214.
Chou, J.-S., Yeh, K.-C., 2015. Life cycle carbon dioxide emissions simulation and environmental cost analysis for building construction. Journal of Cleaner Production 101, 137-147.
Cole, I.S., Corrigan, P., Sim, S., Birbilis, N., 2011. Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? International Journal of Greenhouse Gas Control 5, 749-756.
Cole, I.S., Paterson, D.A., Corrigan, P., Sim, S., Birbilis, N., 2012. State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines. International Journal of Greenhouse Gas Control 7, 82-88.
Connors, K.A., 1990. Chemical kinetics: the study of reaction rates in solution. John Wiley & Sons.
Daud, F.D.M., Vignesh, K., Sreekantan, S., Mohamed, A.R., Kang, M., Kwak, B.S., 2016. Ca(OH)2 nano-pods: investigation on the effect of solvent ratio on morphology and CO2 adsorption capacity. RSC Advances 6, 36031-36038.
de las Obras-Loscertales, M., Mendiara, T., Rufas, A., de Diego, L., García-Labiano, F., Gayán, P., Abad, A., Adánez, J., 2015. NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor. Fuel 150, 146-153.
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., 2014. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 511-597.
EPA, T., 2014. 2014 Taiwan Greenhouse Gas Inventory Report.
Ergun, S., 1952. Fluid flow through packed columns. Chemical engineering progress 48.
Fennell, P., Davidson, J., Dennis, J., Hayhurst, A., 2007. Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems. Journal of the Energy Institute 80, 116-119.
Feron, P., Hendriks, C., 2005. CO2 capture process principles and costs. Oil & Gas Science And Technology 60, 451-459.
Froment, G.F., 2001. Modeling of catalyst deactivation. Applied Catalysis A: General 212, 117-128.
Fuertes, A., Velasco, G., Fuente, E., Alvarez, T., 1994. Study of the direct sulfation of limestone particles at high CO2 partial pressures. Fuel Processing Technology 38, 181-192.
Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., Rodríguez-García, M.E., 2009. Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. Journal of Materials in Civil Engineering 21, 694-698.
García-Abuín, A., Gómez-Díaz, D., Navaza, J.M., 2014. Characterization of carbon dioxide capture by glucosamine: Liquid phase speciation and degradation. Journal of Industrial and Engineering Chemistry 20, 2272-2277.
Geiseler, J., 1996. Use of steelworks slag in Europe. Waste Management 16, 59-63.
Gibbins, J., Chalmers, H., 2008. Carbon capture and storage. Energy Policy 36, 4317-4322.
Goroshko, V., Rozenbaum, R., Todes, O.M., 1958. Approximate laws of fluidized bed hydraulics and restrained fall. Izv. Vyssh. Uchebn. Zaved. Neft Gaz, No. i 125.
Guo, L.F., Pan, K.L., Lee, H.M., Chang, M.B., 2015. High-Temperature Gaseous H2S Removal by Zn–Mn-based Sorbent. Ind Eng Chem Res 54, 11040-11047.
Gupta, H., Fan, L.-S., 2002. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41, 4035-4042.
Hanak, D.P., Biliyok, C., Yeung, H., Białecki, R., 2014. Heat integration and exergy analysis for a supercritical high-ash coal-fired power plant integrated with a post-combustion carbon capture process. Fuel 134, 126-139.
Horisberger, M., 1980. Colloidal gold: a cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy. Scanning electron microscopy, 9-31.
Houghton, F.D., Thompson, J.G., Kennedy, C.J., Leese, H.J., 1996. Oxygen consumption and energy metabolism of the early mouse embryo. Molecular reproduction and development 44, 476-485.
Hwang, K.-S., Park, D.-W., Oh, K.-J., Kim, S.-S., Park, S.-W., 2010. Chemical Absorption of Carbon Dioxide into Aqueous Solution of Potassium Threonate. Separation Science and Technology 45, 497-507.
Hwang, K.-S., Park, S.-W., Park, D.-W., Oh, K.-J., Kim, S.-S., 2009. Sorption kinetics of carbon dioxide onto rubidium carbonate. Korean J. Chem. Eng. 26, 1383-1388.
IEA, 2014. Energy Technology Perspectives 2015 - Mobilising Innovation to Accelerate Climate Action.
Ilavsky, J., Bena, J., 1967. Determination of minimum fluidization velocity of polydispersed materials (2). Chemické Zvesti 21, 877-&.
IPCC, 2005. Special Report on Carbon Dioxide Capture and Storage.
Jansen, D., Gazzani, M., Manzolini, G., van Dijk, E., Carbo, M., 2015. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control 40, 167-187.
Jenkins, H., 2008. Le Chatelier's Principle. Chemical Thermodynamics at a Glance, 160-163.
Kim, Y.-S., Yang, S.-M., 2000. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Separation and Purification Technology 21, 101-109.
Knudsen, J.N., Jensen, J.N., Vilhelmsen, P.J., Biede, O., 2009. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Enrgy Proced 1, 783-790.
Kunii, D., Levenspiel, O., 1991a. Effect of Particles in Bubbles on Fluidized-Bed Mass and Heat-Transfer Kinetics. J Chem Eng Jpn 24, 183-188.
Kunii, D., Levenspiel, O., 1991b. Phase Interchange Coefficients in Bubbling Fluidized-Beds. J Chem Eng Jpn 24, 138-141.
Kunii, D., Levenspiel, O., 2013. Fluidization engineering. Elsevier.
Levenspiel, O., 1999. Chemical reaction engineering. Ind Eng Chem Res 38, 4140-4143.
Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., Marshall, M., 2008. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 14, 415-422.
Li, L., King, D.L., Nie, Z., Howard, C., 2009. Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture. Ind Eng Chem Res 48, 10604-10613.
Li, X., Zhang, L., Zheng, Y., Zheng, C., 2015. Effect of SO2 on CO2 Absorption in Flue Gas by Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. Ind Eng Chem Res 54, 8569-8578.
Ma, C., Pietrucci, F., Andreoni, W., 2014. Capturing CO2 in Monoethanolamine (MEA) Aqueous Solutions: Fingerprints of Carbamate Formation Assessed with First-Principles Simulations. The Journal of Physical Chemistry Letters 5, 1672-1677.
Mahuli, S.K., Agnihotr, R., Jadhav, R., Chauk, S., Fan, L.S., 1999. Combined calcination, sintering and sulfation model for CaCO3‐SO2 reaction. AIChE journal 45, 367-382.
Majchrowicz, M.E., Brilman, D.W.F., Groeneveld, M.J., 2009. Precipitation regime for selected amino acid salts for CO2 capture from flue gases. Enrgy Proced 1, 979-984.
Maqsood, K., Pal, J., Turunawarasu, D., Pal, A., Ganguly, S., 2014. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content. Korean J. Chem. Eng. 31, 1120-1135.
Materic, V., Smedley, S.I., 2011. High temperature carbonation of Ca(OH)2. Ind Eng Chem Res 50, 5927-5932.
McCabe, W.L., Smith, J.C., Harriott, P., 1993. Unit operations of chemical engineering. McGraw-Hill New York.
McGuffie, S., Porter, M., 2008. CFD Analysis and Optimization of an Inlet Manifold for a Large TGU Reactor. ASME 2008 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, pp. 699-702.
Moioli, S., Pellegrini, L., Gamba, S., Li, B., 2014. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution. Front. Chem. Sci. Eng. 8, 123-131.
Mores, P.L., Godoy, E., Mussati, S.F., Scenna, N.J., 2014. A NGCC power plant with a CO2 post-combustion capture option. Optimal economics for different generation/capture goals. Chemical Engineering Research and Design 92, 1329-1353.
Naqvi, S.W.A., Bange, H.W., Gibb, S.W., Goyet, C., Hatton, A.D., Upstill-Goddard, R.C., 2005. Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Prog Oceanogr 65, 116-144.
Nikulshina, V., Galvez, M., Steinfeld, A., 2007. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle. Chemical Engineering Journal 129, 75-83.
NOAAESRL, 2015. Trend in atmospheric Carbon Dioxide.
Olivier, J.G., Janssens-Maenhout, G., Peters, J.A., 2014. Trends in global CO2 emissions: 2014 Report. PBL Netherlands Environmental Assessment Agency Hague.
Pachauri, R.K., Allen, M., Barros, V., Broome, J., Cramer, W., Christ, R., Church, J., Clarke, L., Dahe, Q., Dasgupta, P., 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Park, S.W., Choi, B.S., Lee, J.W., 2007. Breakthrough Data Analysis of Adsorption of Toluene Vapor in a Fixed‐Bed of Granular Activated Carbon. Separation Science and Technology 42, 2221-2233.
Pires, J., Martins, F., Alvim-Ferraz, M., Simões, M., 2011. Recent developments on carbon capture and storage: an overview. Chemical Engineering Research and Design 89, 1446-1460.
Rao, A.B., Rubin, E.S., 2002. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental science & technology 36, 4467-4475.
Rogelj, J., McCollum, D.L., Reisinger, A., Meinshausen, M., Riahi, K., 2013. Probabilistic cost estimates for climate change mitigation. Nature 493, 79-83.
Salvador, C., Lu, D., Anthony, E.J., Abanades, J., 2003. Enhancement of CaO for CO2 capture in an FBC environment. Chemical Engineering Journal 96, 187-195.
Schmitt, J., Flemming, H.-C., 1998. FTIR-spectroscopy in microbial and material analysis. International Biodeterioration & Biodegradation 41, 1-11.
Serpa, J., Morbee, J., Tzimas, E., 2011. Technical and Economic Characteristics of a CO2 Transmission Pipeline Infrastructure.
Studies, N.N.A.a.S.A.G.I.f.S., 2014. GISS Surface Temperature Analysis.
Suyadal, Y., Erol, M., Oguz, H., 2000. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed. Ind Eng Chem Res 39, 724-730.
Thomas, D.C., Benson, S.M., 2015. Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project: Vol 2-Geologic Storage of Carbon Dioxide with Monitoring and Verification. Elsevier.
Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg, P., Jensen, A.D., 2010. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science 36, 581-625.
Tuinier, M.J., Annaland, M.V., Kramer, G.J., Kuipers, J.A.M., 2010. Cryogenic CO2 capture using dynamically operated packed beds. Chem Eng Sci 65, 114-119.
USEPA, 2013. Overview of Greenhouse Gases.
Van der Hoeven, M., 2014. CO2 emissions from fuel combustion–highlights 2014. IEA Statistics.
Wang, D., Xiao, R., Zhang, H., He, G., 2010. Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. Journal of Analytical and Applied Pyrolysis 89, 171-177.
Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C., 2011. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design 89, 1609-1624.
Weisser, D., 2007. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32, 1543-1559.
Wen, C., Yu, Y., 1966. A generalized method for predicting the minimum fluidization velocity. AIChE Journal 12, 610-612.
Wu, S., Beum, T., Yang, J., Kim, J., 2007. Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor. Ind Eng Chem Res 46, 7896-7899.
Wu, T., Xue, Q., Ling, C., Shan, M., Liu, Z., Tao, Y., Li, X., 2014. Fluorine-Modified Porous Graphene as Membrane for CO2/N2 Separation: Molecular Dynamic and First-Principles Simulations. The Journal of Physical Chemistry C 118, 7369-7376.
Xu, B.H., Yu, A.B., 1997. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52, 2785-2809.
Xue, Y., Hou, H., Zhu, S., 2009. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of hazardous materials 162, 973-980.
Yates, J., 2013. Fundamentals of Fluidized-Bed Chemical Processes: Butterworths Monographs in Chemical Engineering. Butterworth-Heinemann.
Yu, C.-T., Chen, W.-C., 2014. Hydrothermal preparation of calcium–aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor. Fuel 122, 179-185.
中國鋼鐵股份有限公司, 2014. 2014 Corporate Sustainability Report.
代嵐, 武士威, 李國德, 2010. 二氧化碳回收技術及應用前景. Liaoning Chemical Industry 第39期, 頁1041-1043.
余秉澤, 2014. 以還原碴廢棄材料捕捉二氧化碳之研究. 國立中央大學環境工程學系碩士論文.
李芹超, 陜紹云, 賈慶明, 蔣雨紅, 王亞明, 2010. 二氧化碳高溫固體吸收劑的研究進展. Bulletin of the Chinese Ceramic Society 第29期, 頁622-626.
林柏翰, 2012. 轉爐爐石/氫氧化鈣吸收劑高溫硫酸化與碳酸化反應之研究. 國立台灣大學工學院化學工程學研究所.
徐恆文, 2007. 二氧化碳的捕獲與分離. 第413期, 頁25-27.
高綾君, 2009. 以爐石在高溫下去除二氧化碳之研究.
許伯良, 林平全, 徐登科, 2011. 轉爐石產製與工程應用. 2011年轉爐石應用於瀝青混凝土鋪面研討會.
連彩綺, 2015. 以脫硫渣在流體化床中去除純氧燃燒煙氣中二氧化碳之研究. 國立成功大學環境工程學系研究所.
廖平浩, 2012. 純氧燃燒中以爐石在高溫下去除二氧化碳之研究.
謝昕懌, 2014. 鈣系爐石在純氧燃燒下吸收二氧化碳之研究.
校內:2021-06-30公開