| 研究生: |
林志洵 Lin, Chih-Hsun |
|---|---|
| 論文名稱: |
整合fMRI-EEG資訊於大腦功能性反應區域與連結關係之分析 Analysis of Brain Functional Activity and Connectivity Based on Integrated Information of fMRI-EEG |
| 指導教授: |
孫永年
Sun, Yung-Nien |
| 共同指導教授: |
林宙晴
Lin, Chou-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 功能性核磁共振造影 、腦電圖 、功能性連結關係 、格蘭傑因果關係模型 |
| 外文關鍵詞: | fMRI, EEG, functional connectivity, GCM |
| 相關次數: | 點閱:130 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,對於人類大腦中神經活動的研究實屬屢見不鮮,其中以功能性核磁共振造影 (functional Magnetic Resonance Imaging,fMRI) 及腦電圖 (Electroencephalogram,EEG) 為兩大主要的分析檢測儀器。然而,這兩者分別都有各自的優劣之處,於是如何各取其之所長並進行一連串的分析就成為了很有趣的議題。本篇論文中欲達到三大目標:第一,成功整合從兩種儀器中所得的大腦資訊;第二,偵測出進行特定動作時大腦中的反應區域;最後,嘗試去分析這些反應區域之間是否存在著連結關係。
由於fMRI在空間上有相當良好的解析度,於是就利用這種特性在一套名為Statistical Parametric Mapping (SPM) 的腦部醫學軟體上進行反應區域定位的分析,再對反應區域周遭的電極訊號經過轉換運算後得到該區域的EEG訊號,即可利用EEG在時間上有良好解析度的優點來做之後的分析。接著,對訊號施以一連串的磁振干擾消除與雜訊處理還原出真實訊號,並對其進行與動作相關的神經活動反應之驗證,最後,即為本篇論文的核心方法,將訊號透過格蘭傑因果關係模型的計算,推導出在大腦中具有區域性、時間性、方向性與不同頻率區段之間的訊號因果關係。在本篇論文的實驗設計中,受測者會被刺激到的大腦區域有視覺區、前運動區與運動區,我們提出的假設認為這些區域之間必然存在一定程度的關連性,並且透過實驗設計可以彰顯出這樣的神經鏈結;所以我們也就將這些區域定為本研究的焦點區域 (Region of Interest,ROI)。
最後,研究結果隨著各種刺激呈現出相對應的反應區域,並且由於神經訊號在不同的頻率區段中代表著不同的生理意義,於是我們就將EEG訊號分解為主要的六個頻段,隨後在各個頻段中分析訊號間的因果關係。在後續結果的分析統計比較中,不論是區域間的連結關係,或是針對出現因果關係的相應頻段的特性,都得到了顯著且值得探討的結論。
The research of functional neural activity within human brain has been discussed widely in recent years, while functional Magnetic Resonance Imaging (fMRI) and Electroencephalogram (EEG) are the two major equipments for examination. However, they both have their own advantages and weaknesses; therefore, obtaining the advantages and applying a series of analysis would be an interesting subject. There were three goals we wished to achieve: First, the integration of neural information given by two equipments; second, to specify the active brain regions with respect to certain motions; finally, attempting to analyze the functional connectivity between these regions.
Due to the fact that fMRI has high spatial resolution, we utilized it to localize the active regions, also known as regions of Interest (ROIs), through a medical software called Statistical Parametric Mapping (SPM). Then, the EEG signal of ROIs could be obtained by a transformation for combining the EEG signals from nearby electrodes, and thus the advantage of high temporal resolution of EEG could be used in the connectivity analysis. Also, we could restore the true EEG signals back by following a whole series of processing such as artifact elimination and noise reduction; moreover, a data-verification was done to testify the motion-related neural activity. Last was the kernel method of this research, we applied the Granger Causality Model (GCM) to the signals and analyze the causal relation with respect to regions, time, direction, and frequency bands. The experiments were designed to activate the visual areas, premotor area, and motor areas. The hypothesis we proposed was that these regions must have a certain amount of connectivity, and through our experiment design, this neural connectivity was observed evidently. Therefore, these areas were defined as the ROIs of our research.
In summary, the results showed different activated ROI according to different kinds of stimuli, and because of that each frequency band of the neural signal stands for distinct physiological meaning, we decomposed EEG signal into six major frequency bands, then analyzed the causal relation within these bands. We gained some significant conclusions either in the regional connectivity or the characteristic of corresponding frequency bands that revealed the connectivity in the following statistical analysis and comparison which were worthy of discussions.
[1] C. J. Fox, G. Iaria, and J. J. S. Barton, “Defining the Face Processing Network: Optimization of the Functional Localizer in fMRI,” Hum. Brain Mapp., Vol. 30, pp. 1637-1651, 2009.
[2] A. Guillot, C. Collet, V. A. Nguyen, F. Malouin, C. Richards, and J. Doyon, “Brain Activity During Visual Versus Kinesthetic Imagery: An fMRI Study,” Hum. Brain Mapp., Vol. 30, pp. 2157-2172, 2009.
[3] O. David, S. J. Kiebel, L. M. Harrison, J. Mattout, J. M. Kilner, and K. J. Friston, “Dynamic causal modeling of evoked responses in EEG and MEG,” NeuroImage, Vol. 30, pp. 1255-1272, 2006.
[4] M. G. Knyazeva, E. Fornari, R. Meuli, and P. Maeder, “Interhemispheric Integration at Different Spatial Scales: The Evidence From EEG Coherence and fMRI,” J. Neurophysiol., Vol. 96, pp. 259-275, 2006.
[5] S. Aydin, H. M. Saraoglu, and S. Kara, “Log Energy Entropy-Based EEG Classification with Multilayer Neural Networks in Seizure,” Annals of Biomedical Engineering, Vol. 37, No. 12, pp. 2626-2630, Dec., 2009.
[6] K. E. Stephan, L. Kasper, L. M. Harrison, J. Daunizeau, H. E.M. den Ouden, M. Breakspear, and K. J. Friston, “Nonlinear dynamic causal models for fMRI,” NeuroImage, Vol. 42, pp. 649-662, 2008.
[7] A. Shmuel, E. Yacoub, J. Pfeuffer, P.-F. V. de Moortele, G. Adriany, X. Hu, and K. Ugurbil, “Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain,” Neuron, Vol. 36, pp. 1195-1210, Dec., 2002.
[8] C. Buchel, O. Josephs, G. Rees, R. Turner, C. D. Frith, and K. J. Friston, “The functional anatomy of attention to visual motion A functional MRI study,” Brain, Vol. 121, pp. 1281-1294, 1998.
[9] W.Hesse, E. Möller, M. Arnold, and B. Schack, “The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies,” J. Neurosci. Methods, Vol. 124, No. 1, pp. 27-44, 2003.
[10] A. Roebroeck, E. Formisano, and R. Goebel, “Mapping directed influence over the brain using Granger causality and fMRI,” NeuroImage, Vol. 25, pp. 230-242, 2005.
[11] G. N. Boldyreva, L. A. Zhavoronkova, E. V. Sharova, S. B. Buklina, A. S. Migalev, D. V. Pyashina, I. N. Pronin, and V. N. Korniyenko, “fMRI–EEG Study of Healthy Human Brain Responses to Functional Loads,” Human Physiology, Vol. 35, No. 3, pp. 274-284, 2009.
[12] G. Pfurtscheller, and F.H. L. da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” J. Clin. Neurophysiol., Vol. 110, pp. 1842-1857, 1999.
[13] H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. S.-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” NeuroImage, Vol. 19, pp. 1463-1476, 2003.
[14] M. M.-Goudarzi, J. Sarnthein, L. Michels, R. Moukhtieva, and D. Jeanmonod, “Enhanced frontal low and high frequency power and synchronization in the resting EEG of parkinsonian patients,” NeuroImage, Vol. 41, pp. 985-997, 2008.
[15] J. C. de Munck, S. I. Goncalves, R. Mammoliti, R. M. Heethaar, and F. H. L. da silva, “Interactions between different EEG frequency bands and their effect on alpha–fMRI correlations,” NeuroImage, Vol. 47, pp. 69-76, 2009.
[16] K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita, “Application of an MEG Eigenspace Beamformer to Reconstructing Spatio-Temporal Activities of Neural Sources,” Hum. Brain Mapp., Vol. 15, pp. 199-215, 2002.
[17] P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S. Wijesinghe, D. M. Tucker, R. B. Silberstein, and P. J. Cadusch, “EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales,” Electroencephalogr. Clin. Neurophysiol., Vol. 103, pp. 499-515, 1997.
[18] I. Ghaleb, C. E. Davila, and R. Srebro, “PREWHITENING OF BACKGROUND BRAIN ACTIVITY VIA AUTOREGRESSIVE MODELING,” IEEE Biomedical Engineering Conference, pp. 242-245, Apr., 1997.
[19] S-Y. Tseng, R-C. Chen, F-C. Chong, and T-S. Kuo, “Evaluation of parametric methods in EEG signal analysis,” Med. Eng. Phys., Vol. 17, pp. 71-78, Jan., 1995.
[20] J. C. de Munck, H. M. Huizenga, L. J. Waldorp, and R. M. Heethaar, “Estimating Stationary Dipoles From MEG/EEG Data Contaminated With Spatially and Temporally Correlated Background Noise,” IEEE Trans. Signal Process., Vol. 50, No. 7, pp. 1565-1572, Jul., 2002.
[21] K. Schindler, H. Leung, C. E. Elger, and K. Lehnertz, “Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG,” Brain, Vol. 130, pp. 65-77, 2007.
[22] F. J. P. Langheim, M. Murphy, B. A. Riedner, and G. Tononi, “Functional connectivity in slow-wave sleep: identification of synchronous cortical activity during wakefulness and sleep using time series analysis of electroencephalographic data,” J. Sleep Res., Blackwell Publishing Ltd, USA, Feb., 2011.
[23] S. M. Boker, M. Xu, J. L. Rotondo, and K. King, “Windowed Cross–Correlation and Peak Picking for the Analysis of Variability in the Association Between Behavioral Time Series,” Psychological Methods, Vol. 7, No. 3, pp. 338-355, Sep., 2002.
[24] L. Sun, and H. Hinrichs, “Simultaneously Recorded EEG–fMRI: Removal of Gradient Artifacts by Subtraction of Head Movement Related Average Artifact Waveforms,” Hum. Brain Mapp., Vol. 30, pp. 3361-3377, 2009.
[25] http://en.wikipedia.org/wiki/Autoregressive_model
[26] C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-spectral Methods,” Econometrica, Vol. 37, No. 3, pp. 424-438, Aug., 1969.
[27] R. F. Engle, and C. W. J. Granger, “Co-Integration and Error Correction: Representation, Estimation, and Testing,” Econometrica, Vol. 55, No. 2, pp-251-276, Mar., 1987.
[28] http://en.wikipedia.org/wiki/Human_brain
[29] http://en.wikipedia.org/wiki/Cerebral_cortex