| 研究生: |
陳思吟 Chen, Szu-Yin |
|---|---|
| 論文名稱: |
BIM智慧元件結合雲端平台之設計輔助研究 Smart BIM Object with Cloud Platform for Architecture Design |
| 指導教授: |
鄭泰昇
Jeng, Tay-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | BIM智慧元件 、雲端技術 、知識模組 |
| 外文關鍵詞: | BIM Smart Object, Cloud Computing, Knowledge Module |
| 相關次數: | 點閱:67 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築資訊模型(Building Information Model, BIM)是目前建築產業積極推廣的技術之一,透過BIM技術改善傳統的設計作業流程。不過在AEC產業應用BIM技術轉型的過程中,台灣目前建築事務所仍缺少開發高階元件的技術、缺乏專業知識分享傳承的平台以及難以管理BIM元件資料,阻礙AEC產業升級與發展。
針對上述的問題,本研究提出一套BIM智慧元件機制「iBIM」,結合雲端與知識模組的概念,透過BIM智慧元件共享簡化開發元件的開發過程,並透過知識模組有組織的將工作流程中所產生的知識儲存,更密切的銜接設計與施工端的設計落差,也讓BIM元件資料更容易管理。「iBIM」智慧元件機制開發包含BIM智慧元件、知識模組讀取技術、雲端平台篩選機制、BIM智慧元件替換機制以及BIM智慧元件深化機制。使用者可將BIM智慧元件作為載體,應用知識模組讀取技術讀取所需專業知識,協助專案設計的審查或提出設計建議;完成設計目標的智慧元件可透過雲端平台篩選機制與BIM智慧元件替換機制,協助找尋與替換iBIM元件平台上的相似產品型元件,有效將設計型元件正規化;而不同利益關係者可於細部設計階段或施工階段應用元件資訊深化機制,持續取得產品型元件相關資料,有效取得所需的元件資料。
本研究的主要貢獻包含: 1) 重新定義BIM智慧元件的特性,進而提出一套「iBIM」BIM智慧元件機制;2) 提供單一情境之案例說明BIM智慧型元件操作方法,以應用知識模組協助設計師評估設計思考;3) 將建築資訊存取於雲端平台,能有效管理BIM元件資料,使用者也可透過雲端技術替換產品型元件並取得其元件相關資訊。目前「iBIM」BIM智慧元件機制仍屬概念階段,後續可透過多重案例操作驗證、資源供享與開放性的討論以及雲端平台的介面研究,將「iBIM」BIM智慧元件機制推向智慧化,並與工業4.0以及智慧工廠概念結合。
SUMMARY
This paper redefined the definition and function of Smart BIM Object according to the demand of industry development, and propose a Smart BIM Object mechanism. It explains the whole mechanism by showing a case, and this case only shows a single scenario. The contribution of this research includes: (1) Redefine Smart BIM Object’s characteristic, and propose a Smart BIM Object mechanism - iBIM; (2) Provide an example about the operational approach of Smart BIM Object which could assist designers to evaluate design by applying knowledge modules; (3) Store building information in cloud platform, which could effectively manage BIM Objects information. Also, designers could replace product objects and inquiring related objects information with the cloud platform.
Keyword: BIM Smart Object, Cloud Computing, Knowledge Module
INTRODUCTION
BIM (Building Information Model) is one of the most appealing techniques been spreading in architecture industry nowadays and aims to be adapted for reforming the traditional design workflow. During the AEC industries reformation in Taiwan, the architecture studios still lack of techniques for developing high level objects, lack of platforms for accumulating professional knowledge, and hard to manage BIM object information. These are the major factors that obstruct AEC industry’s reformation and development. In this article, we discuss the issue about Smart BIM Object with past paper, and try to defined a now definition of Smart BIM Object.
METHODS AND FRAMEWORK
In this research, we propose a Smart BIM Object mechanism – iBIM, which cooperates the concepts of cloud platform and knowledge modules. The cloud platform could simplify the process of object development by sharing and collaborate the objects in the cloud. The knowledge modules could systematically store the domain knowledge from design workflow, minimize the information gap between design and construction, and make the BIM objects easier to manage. The implementation of iBIM Smart BIM Object mechanism includes: Smart BIM Object, accessing techniques for knowledge modules, filter mechanism on cloud platform, replacement mechanism for Smart BIM Object, and contextualized information for Smart BIM Object. Designers could serve Smart BIM Object as a platform, inquire professional knowledge with accessing techniques for knowledge modules, and assist project censorship or propose design recommendations. The Smart BIM Objects that accomplished design goal could search and replace with similar product objects with filter mechanism on cloud platform and replacement mechanism for Smart BIM Object. The process could effectively normalize the design objects. To stakeholders, they could use contextualized information for Smart BIM Object during detailed design and construction stage, continuously acquire product object related information and effectively acquire the needed object information.
RESULTS AND DISCUSSION
The contribution of this research includes: (1) Redefine Smart BIM Object’s characteristic, and propose a Smart BIM Object mechanism - iBIM; (2) Provide an example about the operational approach of Smart BIM Object which could assist designers to evaluate design by applying knowledge modules; (3) Store building information in cloud platform, which could effectively manage BIM Objects information. Also, designers could replace product objects and inquiring related objects information with the cloud platform.
CONCLUSION
Currently, iBIM Smart BIM Object is still in early concept stage, the follow-up study could focus on intelligence of iBIM Smart BIM Object mechanism, and integrate the concept of industry 4.0 and smart factory. The future work includes: validate the concept via several practical cases, discuss the concepts on sharing resources and open information, and the interface design on the cloud platform.
Abanda, F. H., Tah, J. H., & Keivani, R. (2013). Trends in built environment semantic Web applications: Where are we today? Expert Systems with Applications, 40(14), 5563-5577. Retrieved May 01, 2016, from http://ac.els-cdn.com/S0957417413002649/1-s2.0-S0957417413002649-main.pdf
Arcat. (2016). Arcat object platform. Object library. Retrieved April 020, 2016, from www.arcat.com
Autodesk, I. (2015). BIM-Mandates & Policies. Retrieved March 01, 2016, from http://numerique.tech.fr/Barcelona_BIM_Summit_Feb_13th_EDG150213_P.pdf
Autodesk. (2011). Autodesk BIM conference 2011 Autodesk BIM conference 2011 (Vol. 499*396): Autodesk.
Autodesk_Incorporation. (2016). Introduction to Revit Architecture 2016. Retrieved March 15, 2016, from https://knowledge.autodesk.com/support/revit-products
Ackoff, R. L. (1989). From data to wisdom. Journal of applied systems analysis, 16(1), 3-9.
Succar, B. (2013). Building Information Modelling: conceptual constructs and performance improvement tools.School of Architecture and Built Environment Faculty of Engineering and Built Environment University of Newcastle.
Böhler, T. M. (2012, May 10). Industrie 4.0 – Smarte Produkte und Fabriken revolutionieren die Industrie. Produktion Magazin. Retrieved April 20, 2016, from http://www.produktion.de/technik/automatisierung/industrie-4-0-smarte-produkte-und-fabriken-revolutionieren-die-industrie-263.html
BIMForum. (2013). Level of development specification. Retrieved May 05, 2016,from http://bimforum.org/wp-content/uploads/2013/08/2013-LODSpecification.pdf.
Bramann, D.-I. H. (2015). Projecktmanagement-Herbsttagung strategische Werkzeuge des Projektmanagements I- Schwerpunkt Organisation.
Brown, J. S., & Duguid, P. (1998). Organizing knowledge. California management review, 40(3), 90-111.
CHOLAKIS, P. (2012). BIM and Cloud Computing–Get Beyond 3D Visualization and Focus Upon the “I”. Efficient Construction Project Delivery Methods-Sustainability-High Performance Buildings-Knowledge-based Building Information Modeling Systems-BIM- 3D 4D 5D BIM.
Chugh, R. (2015). Do Australian Universities Encourage Tacit Knowledge Transfer?
Construction, M. H. (2014). The Business Value of BIM for Construction in Major Global Markets: How Contractors Around the World Are Driving Innovation with Building Information Modeling. Retrieved March 10, 2016, from https://synchroltd.com/newsletters/Business%20Value%20Of%20BIM%20In%20Global%20Markets%202014.pdf
Coyne, R. D., Rosenman, M. A., & Radford, A. D. (1990). Knowledge based design systems.
Danielson, K. (2008). Distinguishing cloud computing from utility computing. Ebizq. net.(retrieved August 22, 2010).
Das, M., Cheng, J. C., & Kumar, S. S. (2015). Social BIMCloud: a distributed cloud-based BIM platform for object-based lifecycle information exchange. Visualization in Engineering, 3(1), 1-20. Retrieved April 22, 2016, from http://download.springer.com/static/pdf/547/art%253A10.1186%252Fs40327-014-0014-y.pdf
DELCAMBRE, B. (2014). Mission Numerique Batiment Rapport. Francaise Retrieved March 20, 2016, from http://www.planbatimentdurable.fr/IMG/pdf/rapport_mission_numerique_batiment.pdf.
Dipl.-Ing. Helmut Bramann, D. I. M. (2015). Road Map for Digital Design and Construction:Introduction of modern, IT-based processes and technologies for the design, construction and operation of assets in the built environment. Berlin Retrieved April 20, 2016, from http://www.bmvi.de/SharedDocs/EN/Publikationen/road-map-for-digital-design-and-construction.pdf
Dretske, F. (1981). Knowledge and the Flow of Information.
Eastman, C., Eastman, C. M., Teicholz, P., & Sacks, R. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors: John Wiley & Sons.
Eastman, C., Jeng, T. S., Chowdbury, R., & Jacobsen, K. (1997). Integration of design applications with building models CAAD futures 1997 (pp. 45-59): Springer.
Eastman, C., Parker, D. S., & Jeng, T.-S. (1997). Managing the integrity of design data generated by multiple applications: The principle of patching. Research in engineering design, 9(3), 125-145.
Eastman, C. M. (1973). Automated space planning. Artificial intelligence, 4(1), 41-64.
Fox, K., & Cassino, K. (2014). The Business Value of BIM for Construction in Major Global Market. Retrieved January 10,2016, from www/solutions/bim/images/stories/Business%20Value%20of%20BIM%20for%20Construction%20in%20Global%20Markets%20SMR%20(2014).pdf
Gallaher, M., O’Connor, A., Dettbarn Jr, J., & Gilday, L. (2004). Cost analysis of inadequate interoperability in the US capital facilities industry, NIST Publication GCR 04-867.
Halfawy, M. R., & Froese, T. (2002). Modeling and implementation of smart AEC objects: an IFC perspective. Paper presented at the CIB w78 conference—Distributing Knowledge in Building, Aarhus School of Architecture, Denmark.
Heidari, M., Allameh, E., de Vries, B., Timmermans, H., Jessurun, J., & Mozaffar, F. (2014). Smart-BIM virtual prototype implementation. Automation in construction, 39, 134-144.
Ho, S.-P., Tserng, H.-P., & Jan, S.-H. (2013). Enhancing knowledge sharing management using BIM technology in construction. The Scientific World Journal, 2013.
Iorio, F., & Snowdon, J. L. (2011). Leveraging cloud computing and high performance computing advances for next-generation architecture, urban design and construction projects. Paper presented at the Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design.
Jeng, T.-S., & Eastman, C. M. (1998). A database architecture for design collaboration. Automation in construction, 7(6), 475-483. Retrieved March 20, 2016, from http://ac.els-cdn.com/S0926580598000569/1-s2.0-S0926580598000569-main.pdf
John Lorimer, & Mark Bew. (2011). A report for the Government Construction Client Group_BIM working Party Strategy Paper. UK: BIS Retrieved March 15, 2016, from http://www.bimtaskgroup.org/wp-content/uploads/2012/03/BIS-BIM-strategy-Report.pdf.
Kjartansdóttir, I. B. (2012). BIM adoption in Iceland and its relation to lean construction.
Krygiel, E., & Nies, B. (2008). Green BIM: successful sustainable design with building information modeling: John Wiley & Sons.
Levesque, H. J. (1984, August). A logic of implicit and explicit belief. In AAAI(pp. 198-202).
Leroy, T. (2015). Construction Bois et Industrie 4.0. Retrieved January 20, 2016, from French: http://www.ademe.fr/construction-bois-industrie-40
Lu, N., & Korman, T. (2010). Implementation of building information modeling (BIM) in modular construction: Benefits and challenges. Paper presented at the Proceedings of the Construction Research Congress, Banff, Alta.
MBE, M. B. (2015). Digital Built Britain_Level 3 Building Information Modeling-Strategic Plan. UK: HM Goverment(UK).
Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.
Mikulakova, E., König, M., Tauscher, E., & Beucke, K. (2010). Knowledge-based schedule generation and evaluation. Advanced Engineering Informatics, 24(4), 389-403. Retrieved April 22, 2016,from http://www.sciencedirect.com/science/article/pii/S1474034610000546
Motawa, I., & Almarshad, A. (2013). A knowledge-based BIM system for building maintenance. Automation in construction, 29, 173-182.
National Institute of Building Sciences, N. (2007a). National Building Information Modeling Standard Version1-Part1:Overview,Principles, and Methodologies. United States.
NBS. (2016a). National BIM Library. Retrieved April 12, 2016,from http://www.nationalbimlibrary.com/
NBS (Writer). (2016b). NBS BIM Toolkit – free-to-use BIM project management tool: RIBA.
Parvin, A. (2011). WikiHouse Retrieved April 28, 2016, from http://www.wikihouse.cc/about/.
Peter Hansford, M. B. M. (2013). Specification for Information management for the Capital/delivery Phase of Construction Projects Using Building Information Modellig. United Kingdom.
RIBA. (2015) NBS National BIM Report. RIBA Enterprises Ltd.
Rowe, P. (1987). Design Thinking MIT Press. Cambridge, MA, 28.
Schon, D. A., & Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design studies, 13(2), 135-156.
Simon, H. A. (1996). The sciences of the artificial: MIT press.
Smith, C. O. a. C. (2013, 15 April 2013). [Chloe Smith Speaks at the Launch of BIM4SME, Explaining How Digital Technologies can Benefit SMEs in the Construction Industry].
Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in construction, 18(3), 357-375.
Succar, B., Sher, W., Aranda-Mena, G., & Williams, T. (2007). A proposed framework to investigate building information modelling through knowledge elicitation and visual models. Melbourne, Australia, Australasian Universities Building Education (AUBEA2007).
Vaes, K. (2013). Understanding; Data, Knowledge, Information & Wisdom. Retrieved from https://kvaes.wordpress.com/2013/05/31/data-knowledge-information-wisdom/
Waterhouse, R. (2014). NBS BIM Object standard. Retrieved from UK:
Waterhouse, R. (2014). NBS BIM Object standard. UK.
Wong Johnny, Wang Xianyin, Li Heng, Chan Greg, & Li Haijiang. (2014). A review of cloud-based BIM technology in the construction sector. The Journal of Information Technology in Construction, 19, 281-291.
Woo, J.-H., Clayton, M. J., Johnson, R. E., Flores, B. E., & Ellis, C. (2004). Dynamic Knowledge Map: reusing experts' tacit knowledge in the AEC industry. Automation in construction, 13(2), 203-207. Retrieved from http://ac.els-cdn.com/S0926580503001067/1-s2.0-S0926580503001067-main.pdf
Yoshioka, M., Shamoto, Y., & Tomiyama, T. (2000). An application of the knowledge intensive engineering framework to building foundation design Knowledge Intensive Computer Aided Design (pp. 197-212): Springer.
Zhang, J., Seet, B.-C., & Lie, T. T. (2015). Building Information Modelling for Smart Built Environments. Buildings, 5(1), 100-115.
Zhang, S., Teizer, J., Lee, J.-K., Eastman, C. M., & Venugopal, M. (2013). Building information modeling (BIM) and safety: Automatic safety checking of construction models and schedules. Automation in construction, 29, 183-195.
Zins, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal of the
American society for information science and technology, 58(4), 479-493.
郭榮欽、謝尚賢. (1999). BIM技術與公共工程. 公共工程電子報, 38. Retrieved February 05, 2016, from http://www.pcc.gov.tw/epaper/10009/bim.htm
郭榮欽. (2000). 建築物生命週期資訊共享之研究. (博士論文), 國立台灣大學.
施宣光. (2004). 建築設計專案的後社設計--- 從資訊分享到知識傳遞與知識創造(II). Retrieved from 台北市:國立臺灣科技大學建築系
Wu, C.-I., Chen, I.-C., & Huang, S.-Y. (2007). 釋放台灣的社會力: 公共領域, 資訊取得與知識共享. 圖書館學與資訊科學, 33(1).
郭榮欽、謝尚賢. (2010). BIM概說與國內推行策略. 土木水利, 37,NO. 5, 8-20.
郭榮欽. (2011). 淺談現有建築制度下的BIM發展. 營建知訊, 347, 45-48.
郭榮欽. (2012). 從幾個Revit術語初探其BIM模型元件組構技術. 營建知訊, 348, 43-52.
黃元鶴. (2012). 內隱知識 Retrieved April 23,2016, from http://terms.naer.edu.tw/detail/1679066/. from 台北市:國家教育研究院
李偉毓. (2013). 支援 SOHO 設計團隊之參數化設計管理平台.
洪建龍, & 周頌安. (2013). BIM 模型知識萃取之探討.中興工程, (118), 57-62.
Gaoshan, L. (2013) 平台即服務(PaaS) Retrieved from http://wiki.mbalib.com/zh-tw/PaaS. from 智庫百科
謝尚賢. (2014). 借鏡英國攜手BIM進. 營建知訊, 383, 49-52.
丁育群. (2014). 內政部營建署於營建工程導入建築資訊模型之推動與應用. 中國工程師學會 工程雙月刊, 87卷05期, 10-17.
台灣內政部營建署:建築管理組. (2014). 建築物無障礙設施設計規範. 台灣: 內政部營建署 Retrieved from http://www.cpami.gov.tw/chinese/filesys/file/chinese/publication/law/lawdata/1030813014.pdf.
朱峻平 , 林., 周建成 ,謝尚賢. (2015). 擴展BIM至空間資料庫之作法與應用. 營建知訊, 385, 8.
鄭泰昇. (2015). 國內BIM元件通用格式與建置規範研究. 台灣: 內政部建築研究所.
鄭泰昇. (2016). BIM智慧元件之知識模組建構與雲端作業研究. 未出版之手稿,成功大學建築系。
iBT數位建築雜誌編輯部. (2016). 學界、官方推動的積極程度是BIM落實應用的關鍵-專訪 BIM之父查爾斯.伊士曼.。iBT數位建築雜誌.
陳俊源(2001),以本體論為基礎之企業流程分析方法論,清華大學工業工程與工 程管理研究所碩士論文
WikiPedia. (2015). 主題標籤. Retrieved April 22,2016, from https://zh.wikipedia.org/wiki/%E4%B8%BB%E9%A1%8C%E6%A8%99%E7%B1%A4
WikiPedia. (2016a). Python Retrieved April 20,2016, from https://zh.wikipedia.org/wiki/Python.
WikiPedia. (2016b). WordPress Retrieved April 20,2016, from https://zh.wikipedia.org/wiki/WordPress.
WikiPedia. (2016c). 排序演算法. Retrieved April 21,2016, from https://zh.wikipedia.org/wiki/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95
iBIM元件測試平台. (2015). 內政部建築研究所 Retrieved January 20, 2016, from http://140.116.76.41/ibim/