簡易檢索 / 詳目顯示

研究生: 朱家慶
Chu, Chia-Ching
論文名稱: 氫化鈉與氘化鈉分子的雷射光譜研究
Laser Spectroscopic Studies of NaH and NaD Molecules
指導教授: 黃守仁
Whang, Thou-Jen
蔡錦俊
Tsai, Chin-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 188
中文關鍵詞: 氫化鈉氘化鈉基態激發態雷射光譜雙光學共振
外文關鍵詞: NaH, sodium hydride, NaD, sodium deuteride, ground state, excited state, laser spectroscopy, OODR
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫化鈉與氘化鈉分子在1930年代開始被研究至今已將近九十年,由於其為自然界中最簡單的雙原子分子之一,且鈉原子無自然同位素存在,因此廣泛的被實驗學家和理論學家研究。本研究利用雷射誘導螢光激發光譜法與雙光學共振螢光減量光譜法探討氫化鈉與氘化鈉的基態(X 1Σ+ 能態)與激發態(A 1Σ+ 和B 1Π能態)。氫化鈉的基態在本研究中被重新分析,其Dunham擬合採用了Huang et al. 的實驗數據〔J. Chem. Phys. 133, 044301 (2010) 〕和所有已發表的基態振轉能級,擬合出一組振轉能級適用範圍更廣的Dunham係數。在數據分析與實驗校正方面,中間態A 1Σ+ 能態也重新採用了新的分析結果,使此組Dunham係數的精確度得以提高。氘化鈉基態的研究是利用受激放射激發光譜法(stimulated emission pumping, SEP)的雙光學共振(optical-optical double resonance, OODR)螢光減量光譜,並觀察到 v"NaD = 9至近解離區域 v"NaD = 29的振轉能級,分析結果包含了一組Dunham係數、振動與轉動常數的趨勢變化、解離極限與同位素分子的位能井深度差異等。

    氫化鈉與氘化鈉的第一激發態(A 1Σ+ 能態)的研究是利用雷射誘導螢光激發光譜法,其Dunham擬合採用了此次的實驗數據和所有已發表的第一激發態的振轉能級,使Dunham係數可以精確地重現所有的實驗數據;此外,已發表的相關文獻也一併做比較並整理在本研究中。由於鈉分子的螢光干擾導致第一激發態的較高振動能級的螢光收集受到嚴重干擾,因此本研究所觀察到的最高振動能級為v'NaH = 15和v'NaD = 21,其能量大約是第一激發態位能井深度的50%左右。

    氫化鈉的B 1Π能態在本研究中第一次被實驗觀察到,該能態的位能曲線是位在第一激發態(A 1Σ+ 能態)的解離位置附近,因此同樣受到鈉分子螢光的嚴重干擾。本研究的實驗是利用單光儀來收集特定波段的B 1Π能態的雷射誘導螢光訊號,利用此技術可以獲得清楚的螢光激發光譜圖。當鈉分子螢光訊號無法被有效分開時則利用差異光譜分析方法(difference spectral analysis),同樣可以將B 1Π能態的訊號解析出來。B 1Π能態的振轉能級是利用Aymar et al. 的初始計算(ab initio)的結果〔Can. J. Phys. 87, 543 (2009) 〕與實驗數據做比較後而決定,在本研究的實驗中只有觀察到一個振動能級。此外,轉動量子數還可經由雷射誘導螢光光譜和V-type OODR的螢光減量光譜來做確認,最後對分子常數和解離能做了探討與比較。

    Sodium hydride and sodium deuteride have been constantly studied by theorists and experimentalists for almost a century because it is one of the simplest molecules and therefore of fundamental interest. For the NaH X 1Σ+ state, which is also called the ground state, a global fitting was performed and we obtained a new set of Dunham coefficients, which has a higher accuracy and a wider available range of vibrational and rotational quantum numbers than the previous reports. For the NaD molecule, we utilized the stimulated emission pumping (SEP) spectroscopy of optical-optical double resonance (OODR) technique to investigate the NaD X 1Σ+ state. Dunham coefficients, vibrational and rotational constants, dissociation limit, and isotope shifts were determined and discussed.

    The A 1Σ+ state, which is also called the first excited state, of the NaH molecule and that of the NaD molecule were studied using laser-induced fluorescence excitation spectroscopy. We observed 839 transitions for the NaH molecule and 1404 transitions for the NaD molecule. A global Dunham fitting was performed with all accessible data to deduce the Dunham coefficients. Our results are compared with a given literature [J. Chem. Phys. 142, 044305 (2015)]. The fluorescence due to the sodium dimer severely interfered on the NaH and NaD fluorescence collecting of the vibrational levels lying on the potential well of more than half well depth, so that the vibrational levels of only up to v'NaH = 15 and v'NaD = 21 for the A 1Σ+ state were observed.

    The NaH B 1Π state is lying on the near-dissociation region of the NaH A 1Σ+ state. The laser-induced fluorescence excitation spectroscopy was also used in the B state investigation. However, the fluorescence interference due to the sodium dimer is quite severe in this energy regime so that a monochromator-PMT combination and a difference spectral analysis are used. Only one vibrational level of the B 1Π state was observed and a series of PQR branches were identified. The assignment of the rovibrational levels was made by comparing our experimental results with the ab initio calculation results reported by Aymar et al. [Can. J. Phys. 87, 543 (2009)]. The assignment of the rotational quantum number was made via the laser-induced fluorescence spectroscopy and the V-type OODR technique. The dissociation energy and the molecular constants are also discussed.

    摘要 III ABSTRACT V ACKNOWLEDGEMENTS VII TABLE OF CONTENTS VIII LIST OF TABLES X LIST OF FIGURES XII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 THEORY 5 2.1 The Schrödinger equation 5 2.2 The Born-Oppenheimer approximation 6 2.3 Rovibrational spectroscopy of diatomic molecules 8 2.4 The Dunham expansion 10 2.5 Hund's coupling cases 13 2.6 Selection rules 15 2.7 The Franck-Condon principle 17 2.8 Reduced mass scaling method 18 CHAPTER 3 EXPERIMENT 21 3.1 Experimental setup 21 3.1.1 Laser system 21 3.1.2 Heat pipe oven 22 3.1.3 Calibration system 23 3.1.4 Signal detection and data processing 24 3.2 Laser-induced fluorescence spectroscopy and excitation spectroscopy 25 3.3 Optical-optical double resonance fluorescence depletion spectroscopy 27 CHAPTER 4 X 1Σ+ STATE OF NaH AND NaD 28 4.1 Literature review 28 4.2 NaH X 1Σ+ state reanalysis 31 4.3 Spectroscopy study of the NaD X 1Σ+ state 37 CHAPTER 5 A 1Σ+ STATE OF NaH AND NaD 54 5.1 Literature review 54 5.2 Results and discussion 57 CHAPTER 6 B 1Π STATE OF NaH AND NaD 71 6.1 Literature review 71 6.2 Spectroscopy study of the NaH and NaD B 1Π state 74 CHAPTER 7 HIGHER EXCITED STATE OF NaH AND NaD 92 CHAPTER 8 CONCLUSIONS AND FUTURE WORK 99 APPENDICES 104 APPENDIX A. Analysis of the NaH X 1Σ+ state 104 APPENDIX B. Analysis of the NaD X 1Σ+ state 110 APPENDIX C. Analysis of the NaH A 1Σ+ state 114 APPENDIX D. Analysis of the NaD A 1Σ+ state 142 APPENDIX E. Analysis of the NaH B 1Π state 155 APPENDIX F. Franck-Condon factors 156 REFERENCES 182

    1. W. C. Stwalley, W. T. Zemke, J. Phys. Chem. Ref. Data 22, 87 (1993).
    2. W. C. Stwalley, W. T. Zemke, S. C. Yang, J. Phys. Chem. Ref. Data 20, 153 (1991).
    3. M. Aymar, J. Deiglmayr, O. Dulieu, Can. J. Phys. 87, 543 (2009).
    4. H. Y. Huang, T. L. Lu, T. J. Whang, Y. Y. Chang, C. C. Tsai, J. Chem. Phys. 133, 044301 (2010).
    5. T. L. Lu, SEP of the NaH X 1Σ+ State and OODR of the Intriguing Double-well C 1Σ+ State, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2003.
    6. F. P. Pesl, S. Lutz, K. Bergmann, Eur. Phys. J. D 10, 247 (2000).
    7. H. Y. Huang, Laser Spectroscopy of the X, A and C 1Σ+ States in NaH Molecule, Ph. D. Thesis, National Cheng Kung University, Taiwan, 2010.
    8. C. C. Chu, Y. N. Chuang, C. Y. Kuo, T. J. Whang, C. C. Tsai, The A 1Σ+-state of NaH and NaD: Comparison of Observations With Expanded Morse Oscillator Potential, J. Mol. Spectrosc. (in preparation).
    9. S. Lochbrunner, M. Motzkus, G. Pichler, K. L. Kompa, P. Hering, Z. Phys. D: At. Mol. Clusters 38, 35 (1996).
    10. C. C. Chu, H. Y. Huang, T. J. Whang, C. C. Tsai, J. Chem. Phys. 148, 114301 (2018).
    11. H. Y. Huang, Y. Y. Chang, M. H. Liao, K. L. Wu, T. L. Lu, Y. Y. Chang, C. C. Tsai, T. J. Whang, Chem. Phys. Lett. 493, 53 (2010).
    12. Y. Y. Chang, Optical-optical Double Resonance of the NaH C 1Σ+ State, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2000.
    13. M. H. Liao, Absolute Vibrational Numbering of the NaH C 1Σ+ State, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2001.
    14. K. L. Wu, Spectroscopic Study of the NaH C 1Σ+ Higher and Lower Vibrational State Levels, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2002.
    15. C. H. Yung, Optical-Optical Double Resonance Spectroscopy of the NaH D 1Σ+ State, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2003.
    16. J. M. Chiang, Spectroscopic Study of the NaH D 1Σ+ Higher Vibrational State Levels, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2004.
    17. Y. H. Hsiao, Spectroscopic Study of the NaH D 1Σ+ State in the Dissociation Limit and Double-well Potential, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2006.
    18. C. C. Chu, H. Y. Huang, H. C. Lin, Y. H. Hsiao, T. J. Whang, C. C. Tsai, Observation of the Shallow 2 1Π State of NaH, J. Chem. Phys. submitted (2018).
    19. H. C. Lin, Spectroscopic Study of the NaH 2 1Π State, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2006.
    20. C. C. Chu, W. F. He, R. S. Lin, Y. J. Li, T. J. Whang, C. C. Tsai, J. Chem. Phys. 147, 024301 (2017).
    21. Y. J. Li, Laser Spectroscopic Study of the NaD First Excited Singlet State and Parts of the Ground State, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2013.
    22. R. S. Lin, Study of the NaD X 1Σ+ State and Part of D 1Σ+ State by OODR Depletion Spectroscopy, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2014.
    23. W. F. He, Spectroscopic Study for the Ground State of NaD Near Dissociation Limit, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2015.
    24. C. C. Chu, The Excitation Spectroscopy of the NaD X–A Transitions and the Synthesis of ZnS Nanoparticles, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2011.
    25. M. H. Lin, Study of the Gas Phase NaD C 1Σ+ State by OODR Depletion Spectroscopy, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2013.
    26. S. E. Cheng, Spectroscopic Study of the C 1Σ+ Higher Vibrational Levels in Gaseous Sodium Deuteride Molecules, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2014.
    27. B. L. Huang, Spectroscopic Study of the NaD 2 1Π State, M.Sc. Thesis, National Cheng Kung University, Taiwan, 2016.
    28. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1981).
    29. D. A. McQuarrie, Quantum Chemistry (University Science Books, Mill Valley, CA, 1983).
    30. E. Schrödinger, Phys. Rev. 28, 1049 (1926).
    31. M. Born, J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).
    32. D. A. McQuarrie, J. D. Simon, Physical Chemistry: A Molecular Approach (University Science Books, Sausalito, CA, 1997).
    33. W. Demtröder, Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics, 2nd ed. (Springer-Verlag, Berlin, 2010).
    34. G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules (Robert E. Krieger Publishing Co., Malabar, FL, 1989).
    35. J. L. Dunham, Phys. Rev. 41, 713 (1932); Phys. Rev. 41, 721 (1932).
    36. J. M. Brown, A. Carrington, Rotational Spectroscopy of Diatomic Molecules (Cambridge University Press, New York, NY, 2003).
    37. R. S. Mulliken, Rev. Mod. Phys. 2, 60 (1930).
    38. A. Carrington, C. H. Pyne, A. M. Shaw, S. M. Taylor, J. M. Hutson, M. M. Law, J. Chem. Phys. 105, 8602 (1996).
    39. W. Demtröder, Molecular Physics: Theoretical Principles and Experimental Methods (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007).
    40. W. S. Struve, Fundamentals of Molecular Spectroscopy (John Wiley & Sons, Ltd, Chichester, 1989).
    41. T. J. Whang, Laser Spectroscopy of CW Optical-optical Double Resonance and All-optical Triple Resonance in Diatomic Sodium Molecules, Ph. D. Thesis, University of Iowa, Iowa city, Iowa, 1991.
    42. J. Franck, Trans. Faraday Soc. 21, 536 (1926).
    43. E. U. Condon, Phys. Rev. 28, 1182 (1926); Phys. Rev. 32, 858 (1928).
    44. C. N. Banwell, E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th ed. (Tata-McGraw-Hill, New Delhi, 1994).
    45. N. J. Turro, Modern Molecular Photochemistry (Benjamin/Cummings Pub. Co., Menlo Park, CA, 1978)
    46. W. C. Stwalley, J. Chem. Phys. 63, 3062 (1975).
    47. U. Brackmann, Lambdachrome® Laser Dyes, 3rd ed. (Lambda Physik GmbH, Göttingen, 2000).
    48. A. S. King, Astrophys. J. 21, 236 (1905); Ann. Phys. 16, 360 (1905).
    49. A. S. King, Astrophys. J. 27, 353 (1908); Astrophys. J. 28, 300 (1908).
    50. G. M. Grover, T. P. Cotter, G. F. Erickson, J. Appl. Phys. 35, 1990 (1964).
    51. C. R. Vidal, J. Cooper, J. Appl. Phys. 40, 3370 (1969).
    52. E. B. Saloman, C. J. Sansonetti, J. Phys. Chem. Ref. Data 33, 1113 (2004).
    53. X. Zhu, A. H. Nur, P. Misra, J. Quant. Spectrosc. Radiat. Transfer 52, 167 (1994).
    54. H. M. Crosswhite, J. Res. Natl. Bur. Stand. 79A, 17 (1975).
    55. B. Edlén, J. Opt. Soc. Am. 43, 339 (1953).
    56. D. C. Morton, Astrophys. J. Suppl. Ser. 77, 119 (1991).
    57. B. Edlén, Metrologia 2, 71 (1966).
    58. E. R. Peck, K. Reeder, J. Opt. Soc. Am. 62, 958 (1972).
    59. S. Gerstenkorn, P. Luc, Atlas du spectre d'absorption de la molécule d'iode, Part I: 14000–15600 cm–1 (Laboratoire Aimé Cotton, CNRS II, Orsay); Part II: 14800–20000 cm–1 (Editions du CNRS, Paris).
    60. S. Gerstenkorn, P. Luc, Rev. Phys. Appl. 14, 791 (1979).
    61. H. Salami, A. J. Ross, J. Mol. Spectrosc. 233, 157 (2005).
    62. R. N. Zare, Annu. Rev. Anal. Chem. 5, 1 (2012).
    63. P. J. Dagdigian, J. Chem. Phys. 64, 2609 (1976).
    64. K. R. Leopold, L. R. Zink, K. M. Evenson, D. A. Jennings, J. Mol. Spectrosc. 122, 150 (1987).
    65. U. Magg, H. Jones, Chem. Phys. Lett. 146, 415 (1988).
    66. A. G. Maki, W. B. Olson, J. Chem. Phys. 90, 6887 (1989).
    67. K. V. L. N. Sastry, E. Herbst, F. C. De Lucia, J. Chem. Phys. 75, 4753 (1981).
    68. M. Giroud, O. Nedelec, J. Chem. Phys. 73, 4151 (1980).
    69. O. Nedelec, M. Giroud, J. Chem. Phys. 79, 2121 (1983).
    70. E. Olsson, Z. Phys. 93, 206 (1935).
    71. M. Dolg, Theor. Chim. Acta. 93, 141 (1996).
    72. A. K. Belyaev, J. Grosser, J. Hahne, T. Menzel, Phys. Rev. A 60, 2151 (1999).
    73. A. S. Dickinson, R. Poteau, F. X. Gadéa, J. Phys. B: At., Mol. Opt. Phys. 32, 5451 (1999).
    74. H. S. Lee, Y. S. Lee, G. H. Jeung, Chem. Phys. Lett. 325, 46 (2000).
    75. N. Geum, G. H. Jeung, A. Derevianko, R. Côté, A. Dalgarno, J. Chem. Phys. 115, 5984 (2001).
    76. C. L. Yang, X. Zhang, K. L. Han, J. Mol. Struct.(THEOCHEM) 676, 209 (2004).
    77. B. K. Taylor, P. R. Newman, J. Chem. Phys. 118, 8770 (2003).
    78. S.-D. Walji, K. M. Sentjens, R. J. Le Roy, J. Chem. Phys. 142, 044305 (2015).
    79. R. C. Pankhurst, Proc. Phys. Soc. London, Sect. A 62, 191 (1949).
    80. E. S. Sachs, J. Hinze, N. H. Sabelli, J. Chem. Phys. 62, 3377 (1975).
    81. J. Mitroy, M. W. J. Bromley, Phys. Rev. A 68, 062710 (2003); Erratum, 71, 019902 (2005).
    82. B. Ji, C. C. Tsai, W. C. Stwalley, Chem. Phys. Lett. 236, 242 (1995).
    83. R. J. Le Roy, W. H. Lam, Chem. Phys. Lett. 71, 544 (1980).
    84. C. R. Vidal, W. C. Stwalley, J. Chem. Phys. 80, 2697 (1984).
    85. Y. C. Chan, D. R. Harding, W. C. Stwalley, C. R. Vidal, J. Chem. Phys. 85, 2436 (1986).
    86. R. D. E. Henderson, A. Shayesteh, J. Tao, C. C. Haugen, P. F. Bernath, R. J. Le Roy, J. Phys. Chem. A 117, 13373 (2013).
    87. R. S. Mulliken, Phys. Rev. 50, 1028 (1936).
    88. T. Hori, Z. Phys. 62, 352 (1930); Z. Phys. 71, 478 (1931).
    89. F. B. Orth, W. C. Stwalley, S. C. Yang, Y. K. Hsieh, J. Mol. Spectrosc. 79, 314 (1980).
    90. M. Rafi, N. Ali, K. Ahmad, I. A. Khan, M. A. Baig, Z. Iqbal, J. Phys. B: At. Mol. Opt. Phys. 26, L129 (1993).
    91. J. T. Bahns, C. C. Tsai, B. Ji, J. T. Kim, G. Zhao, W. C. Stwalley, J. C. Bloch, R. W. Field, J. Mol. Spectrosc. 186, 222 (1997).
    92. R. Al-Tuwirqi, A. Bakry, M. Rafi, Fayyazuddin, J. Phys. B: At. Mol. Opt. Phys. 30, 2033 (1997).
    93. C. L. Pekeris, Phys. Rev. 45, 98 (1934).
    94. C. C. Chu, T. J. Whang, C. C. Tsai, First Observation of the B 1Π State of NaH, J. Phys. Chem. A (in preparation).
    95. E. L. Lewis, L. F. McNamara, H. H. Michels, Phys. Rev. A 3, 1939 (1971).
    96. E. S. Sachs, J. Hinze, N. H. Sabelli, J. Chem. Phys. 62, 3393 (1975).
    97. R. W. Numrich, D. G. Truhlar, J. Phys. Chem. 79, 2745 (1975).
    98. C. F. Melius, R. W. Numrich, D. G. Truhlar, J. Phys. Chem. 83, 1221 (1979).
    99. R. E. Olson, B. Liu, J. Chem. Phys. 73, 2817 (1980).
    100. R. E. Olson, M. Kimura, Phys. Rev. A 32, 3092 (1985).
    101. T. Leininger, F. X. Gadéa, A. S. Dickinson, J. Phys. B: At. Mol. Opt. Phys. 33, 1805 (2000).
    102. N. Khelifi, J. Russ. Laser Res. 29, 274 (2008).
    103. C. R. Vidal, W. C. Stwalley, J. Chem. Phys. 80, 2697 (1984).
    104. W. T. Luh, P. D. Kleiber, A. M. Lyyra, W. C. Stwalley, K. C. Lin, J. Mol. Spectrosc. 129, 388 (1988).
    105. A. Y. Lee, W. T. Luh, J. Chem. Phys. 131, 164304 (2009).
    106. J. E. Sansonetti, J. Phys. Chem. Ref. Data 37, 1659 (2008).
    107. Li Li, R. W. Field, J. Mol. Spectrosc. 117, 245 (1986).
    108. Y. Liu, J. Li, H. Gao, D. Chen, Li Li, R. W. Field, A. M. Lyyra, J. Chem. Phys. 108, 2269 (1998).
    109. Y. M. Liu, H. M. Chen, J. Li, D. Y. Chen, Li Li, R. W. Field, J. Mol. Spectrosc. 192, 32 (1998).
    110. G. Lazarov, A. M. Lyyra, Li Li, J. Huennekens, J. Mol. Spectrosc. 196, 259 (1999).
    111. V. S. Ivanov, V. B. Sovkov, N. Gallice, Li Li, Y. Liu, A. M. Lyyra, S. Magnier, J. Mol. Spectrosc. 209, 116 (2001).
    112. J. P. Woerdman, Chem. Phys. Lett. 43, 279 (1976).
    113. J. P. Woerdman, Opt. Commun. 26, 216 (1978).
    114. J. T. Bahns, W. C. Stwalley, Appl. Phys. Lett. 44, 826 (1984).
    115. G. Pichler, J. T. Bahns, K. M. Sando, W. C. Stwalley, D. D. Konowalow, Li Li, R. W. Field, W. Müller, Chem. Phys. Lett. 129, 425 (1986).
    116. D. Xing, Q. Wang, S. Tan, K. Ueda, IEEE J. Quantum Electron. 34, 1765 (1998).
    117. N. Khelifi, J. Phys. Chem. A 113, 8425 (2009).
    118. A. Boutalib, F. X. Gadéa, J. Chem. Phys. 97, 1144 (1992).
    119. F. Gemperle, F. X. Gadéa, J. Chem. Phys. 110, 11197 (1999).
    120. W. C. Lin, J. J. Chen, W. T. Luh, J. Phys. Chem. A 101, 6709 (1997).
    121. J. J. Chen, W. T. Luh, G. H. Jeung, J. Chem. Phys. 110, 4402 (1999).
    122. S. K. Hsu, J. J. Wang, P. Yu, C. Y. Wu, W. T. Luh, J. Phys. Chem. A 106, 6279 (2002).
    123. N. Bouloufa, L. Cabaret, P. Luc, R. Vetter, W. T. Luh, J. Chem. Phys. 121, 7237 (2004).
    124. U. Fano, Phys. Rev. 124, 1866 (1961).
    125. Y. L. Huang, W. T. Luh, G. H. Jeung, F. X. Gadéa, J. Chem. Phys. 113, 683 (2000).
    126. C. Y. Wu, W. T. Luh, G. H. Jeung, W. C. Stwalley, J. Chem. Phys. 128, 064303 (2008).
    127. M. Aymar, O. Dulieu, J. Chem. Phys. 122, 204302 (2005).

    無法下載圖示 校內:2023-08-01公開
    校外:2026-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE