簡易檢索 / 詳目顯示

研究生: 曾以帆
Tseng, I-Fan
論文名稱: Boussinesq方程式邊界條件之改良與應用
On the Improvement of Boundary Conditions and Applications of Boussinesq Equations
指導教授: 許泰文
Hsu, Tai-Wen
李忠潘
Lee, Chung-Pan
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 92
中文關鍵詞: 布氏方程式溯上布拉格反射
外文關鍵詞: runup, Bragg reflection, Boussinesq equations
相關次數: 點閱:92下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文建立二階全非線性Boussinesq 數值模式,改善低階 Boussinesq 方程式之弱非線性及弱分散性,以模擬近岸高非線性波浪變形。針對二階全非線性 Boussinesq 數值模式之邊界條件加以改良,在開放邊界處設立海綿層邊界,由理論分析求得海綿層內函數之遞減型式及阻尼係數。結果顯示阻尼係數為相對水深之函數,計算時可由實際的波浪條件來決定最佳係數,減少往昔數值計算時參數選定所用試誤法之不確定性,增進數值計算之效率和精度。並進行斜坡底床與潛堤地形之數值驗証,包括規則波與不規則波造波,以証明本文模式的適用性。
      應用本文發展之非線性波浪模式,模擬波浪通過非等坡度底床之變形現象,包括淺化、碎波、波浪再生、溯升以及水位揚升等,觀測波浪於近岸地形之實際水位變化。並針對不同波浪條件與不同坡度底床下,統計分析碎波參數、堤面波浪溯升高度及堤前反射率間之關係,提出修正的經驗式以擴大適用範圍。
      最後分析規則波和不規則波波浪通過沙漣底床時產生的布拉格反射現象,與 Miles (1981) 理論之反射率公式、Hsu 等人 (2003) 之演進型態緩坡方程式計算結果以及試驗資料作比較。結果顯示不規則波於主共振和次諧波共振處之反射率小於規則波,而不規則波之反射率帶寬則大於規則波。並針對布拉格反射之影響因素,包括沙漣個數、沙漣高度及沙漣間距等,進行一系列的數值模擬及分析探討。結果顯示增加沙漣個數及沙漣高度,可使主共振反射率變大;而加大沙漣間距時雖主共振反射率減小,但次諧波共振反射率則變大。

     To improve the weak nonlinearity and weak dispersion of the classical Boussinesq equation, a 2nd-order fully nonlinear Boussinesq model based on Wei and Kirby (1995)’s scheme is established in this study. This model also uses the eddy viscosity technique to model breaking, and a “slotted beach” to simulate run-up phenomena. The damping coefficients of the sponge layer boundary in this model are derived theoretically. The present result differs from former researches in which the free parameters in the damping coefficients are suggested by numerical tests to control the effect of the sponge layer. Numerical experiments show that the proposed damping coefficients work efficiently on reducing the energy of reflected waves from the sponge layer. The numerical tests are performed to verify the applicability and validity of the present model.
     The present model is performed to simulate the deformation of waves propagating over the varying topography, including shoaling, breaking, recovery, runup and setup, etc. With different wave conditions and beach slopes, numerical analysis of the surf similarity parameter, runup elevation and reflection coefficient result in extended range of the empirical formulas.
     This study is also applied to simulate the Bragg reflection of monochromatic and random waves due to artificial sand ripples. The numerical results are compared with the theoretical solutions of Miles (1981), and with the corresponding results using the evolution equation for mild slope equation of Hsu et al. (2003) and the experimental data. For the monochromatic wave, the present model can predict the reflection coefficients of the primary and second-harmonic resonance well. For the random waves, the reflection coefficients of the primary resonance are smaller and the reflection bandwidth is wider than the monochromatic wave, so the Bragg reflection of random waves is different from that of the monochromatic wave. In addition, present model is applied to study the affecting factors of the Bragg reflection, including the number, the height and the spacing of artificial sand ripples.

    中文摘要 I 英文摘要 II 目錄 IV 圖目錄 VII 表目錄 IX 符號說明 X 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 2 1-2-1 Boussinesq 方程式 2 1-2-2 海綿層邊界條件 7 1-2-3 碎波與溯升 7 1-2-4 布拉格反射 9 1-3 本文組織 11 第二章 理論介紹 12 2-1 二階全非線性Boussinesq方程式 12 2-2 波浪碎波 13 2-3 波浪溯升 15 第三章 Boussinesq方程式海綿層邊界之改良 18 3-1 海綿層內阻尼係數之理論解析 18 3-2 海綿層內參數之設定 24 3-3 應用分析 29 第四章 數值模式 35 4-1 數值模式控制方程式 35 4-1-1 一維全非線性Boussinesq 方程式 35 4-1-2 包含波浪碎波及溯升效應 36 4-2 控制方程式之離散化 37 4-2-1 空間項之離散 37 4-2-2 時間項之離散 39 4-3 邊界條件 40 4-3-1 完全反射邊界條件 40 4-3-2 消波邊界條件 41 4-3-3 入射波邊界條件 42 4-4 模式驗證 44 4-4-1 消波邊界測試 45 4-4-2 造波函數測試 46 4-5 波浪通過潛堤之測試 49 4-5-1 規則波測試 49 4-5-2 不規則波測試 51 4-6 波浪通過斜坡之測試 53 4-6-1 規則波測試 53 4-6-2 不規則波測試 57 第五章 模式應用 59 5-1 波浪通過非均勻坡度底床之變形 59 5-2 碎波及溯升分析 62 5-3 布拉格共振與反射計算 66 5-3-1 沙漣底床前之反射率分析 66 5-3-2 沙漣間距與波長比值對反射率之影響 70 5-3-3 沙漣個數對反射率之影響 75 5-3-4 沙漣高度對反射率之影響 76 5-3-5 沙漣間距對反射率之影響 77 第六章 結論與建議 79 6-1 結論 79 6-2 建議 80 參考文獻 81 作者簡歷 90

    參考文獻
    (1) Abbott, M.B. and Basco, D.R., Computational Fluid Dynamics, Inc. Longman Scientific and Technical (1989).
    (2) Bailard, J.A., “An energetics total sediment transport model for a plane sloping beach,” Journal of Geophysical Research, Vol. 86, No. C11, pp. 10938–10954 (1981).
    (3) Bailard, J.A., DeVries, J.W. and Kirby, J.T., “Consideration in using Bragg reflection for storm erosion protection,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 118, No. 1, pp. 62-74 (1992).
    (4) Battjes, J.A., “Surf similarity,” Proceedings of 14th International Conference on Coastal Engineering, ASCE, pp. 466-480 (1974).
    (5) Beji, S. and Battjes, J.A., “Experimental investigation of wave propagation over a bar,” Coastal Engineering, Vol. 19, pp. 151-162 (1993).
    (6) Beji, S., Ohyama, T., Battjes, J.A. and Nadaoka, K., “Transformation of non- breaking waves over a bar,” Coastal Engineering, pp. 51-61 (1992).
    (7) Berkhoff, J.C.W., “Computation of combined refraction-diffraction,” Proceedings of the 13th International Conference on Coastal Engineering, ASCE, Vancouver, Vol. 1, pp. 705-720 (1972).
    (8) Boussinesq, J., “Theorie des ondes et ramous qui se propagent le long dun canal rectangularire horizontal, en communiquant au liquide contenu dansce canal des vitesses sensiblement pareilles de la surface au,” Journal of Mathematical Pure et Application, 2nd Series, Vol. 17, pp. 55-108 (1872).
    (9) Carrier, G.F. and Greenspan, H.P., “Water waves of finite amplitude on a sloping beach,” Journal of Fluid Mechanics, Vol. 4, pp. 97-109 (1958).
    (10) Chamberlain, P.G. and Poter, D., “The modified mild-slope equation,” Journal of Fluid Mechanics, Vol. 291, pp. 393-407 (1995).
    (11) Chawla, A. and Kirby, J.T., “A source function method for generation of waves on currents in Boussinesq models,”Applied Ocean Research, Vol. 22, pp. 75-83 (2000).
    (12) Chen, Q., Madsen, P.A., Schaffer, H.A. and Basco, D.R., “Wave-current interaction based on an enhanced Boussinesq approach,” Coastal Engineering, Vol. 33, pp. 11-39 (1998).
    (13) Chen, Q., Madsen, P.A. and Basco, D.R., “Current effects on nonlinear interactions of shallow-water waves,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, No. 4, pp. 176-186 (1999).
    (14) Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B., Thornton, E.B. and Shi, F., “Boussinesq modeling of waves and longshore currents under field conditions,” Proceedings of the 27th International Conference on Coastal Engineering, ASCE, Sydney, pp. 651-663 (2000a).
    (15) Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B. and Chawla, A., “Boussinesq model of wave transformation, breaking and runup. II:2D,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, No. 1, pp. 48-56 (2000b).
    (16) Cho, Y.S. and Lee, C., “Resonant reflection of waves over sinusoidally varying topographies,” Journal of Coastal Research, Vol. 16, No. 3, pp. 870-876 (2000).
    (17) Davies, A.G. and Heathershaw, A.D., “Surface propagation over sinusoidally varying topography,” Journal of Fluid Mechanics, Vol. 144, pp. 419-446 (1984).
    (18) Dibajnia, M., and Watanabe, A. “Sheet flow under nonlinear waves and currents,” Proceedings of the 23rd International Conference on Coastal Engineering, ASCE, New York, pp. 2015–2028 (1992).
    (19) Gobbi, M.F. and Kirby, J.T., “A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to ,” Coastal Engineering, Vol. 37, pp. 57-96 (2000).
    (20) Goda, Y., “A comparative review on the functional forms of directional wave spectrum,” Coastal Engineering Journal, Vol. 41, No. 1, pp. 1-20 (1999).
    (21) Goda, Y. and Suzuki, Y., “Estimation of incident and reflected waves in random wave experiments,” Proceedings of the 15th International Conference on Coastal Engineering, ASCE, Hawaii, pp. 628-650 (1976).
    (22) Gopalakrishnan, T.C., “A moving boundary circulation model for regions with large tidal flats,” Internal Journal for Numerical Methods in Engineering, Vol. 28, pp. 245-260 (1989).
    (23) Heitner, K.L. and Housner, G.W., “Numerical model for tsunami runup,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 96, pp. 701-719 (1970).
    (24) Hirayama, K., “Characteristics of partial reflection boundary with porous layer on the Boussinesq model,” Proceedings of 22nd International offshore and polar Engineering Conference, Kitakyushu, Japan, pp. 26-31 (2002).
    (25) Horikawa, K. and Kuo, C.T., “A study on wave transformation inside surf zone,” Proceedings of 10th International Conference on Coastal Engineering, ASCE, Tokyo, pp. 217-233 (1966).
    (26) Hsu, T.W., Ou, S.H., Yang, B.D. and Tseng, I.F., “On the damping coefficient of sponge layer in Boussinesq equations,” Wave Motion, Vol. 41, pp. 45-57 (2005).
    (27) Hsu, T.W., Tsai, L.H. and Huang, Y.T., “Bragg scattering of water waves by doubly composite artificial bars,” Coastal Engineering Journal, Vol. 45, No. 2, pp. 235-253 (2003).
    (28) Hsu, T.W., Yang, B.D., Tseng, I.F. and Chou, S.E., “A 2nd-order fully nonlinear Boussinesq equations,” Proceedings of 5th International Conference on Hydrodynamics, Tainan, pp. 389-394 (2002a).
    (29) Hsu, T.W., Yang, B.D., Tsai, J.Y. and Chou, S.E., “A Boussinesq model of nonlinear wave transformation,” Proceedings of 11th International Offshore and Polar Engineering Conference, Kyushu, Vol. III., pp. 156-160 (2002b).
    (30) Hunt, I.A., “Design of seawalls and breakwaters,” Journal of the Waterways and Harbors Division, ASCE, WW3, September, pp. 123-152 (1959).
    (31) Israeli, M. and Orszag, S.A., “Approximation of radiation boundary conditions,” Journal of Computational Physics, Vol. 41, No. 1, pp. 115-135 (1981).
    (32) Karambas V.T., “2DH non-linear dispersive wave modeling and sediment transport in the nearshore zone,” Proceedings of the 26th International Conference on Coastal Engineering, ASCE, Reston, Va., pp. 2940-2953 (1998).
    (33) Karambas V.T. and Koutitas C., “Surf and swash zone morphology evolution induced by nonlinear waves,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 128, No. 3, pp. 102-113 (2002).
    (34) Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A., “Boussinesq modeling of wave transformation, breaking, and runup. I: 1D,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol.126, No.1, pp. 39-47 (2000).
    (35) Kennedy A.B., Kirby J.T. and Gobbi M.F., “Simplified higher-order Boussinesq equations I. Linear simplification,”Coastal Engineering, Vol. 44, pp. 205-229 (2002).
    (36) Kirby, J.T., Wei, G., Chen, Q., Kennedy A.B. and Dalrymple R.A., Fully nonlinear Boussinesq wave model Documentation and user’s manual, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark, CACR-98-06 (1998).
    (37) Kirby, J.T. and Anton, J.P., “Bragg reflection of waves by artificial bars,” Proceedings of the 22nd International Conference on Coastal Engineering, ASCE, New York, pp. 757-768 (1990).
    (38) Kirby, J.T., “A general wave equation for waves over rippled beds,” Journal of Fluid Mechanics, Vol. 162, pp. 171-186 (1986).
    (39) Kirby, J.T., “Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents,” Advances in coastal engineering, V.C. Lakhan, ed., Elsevier Science, New York (2002).
    (40) Larsen, J. and Dancy, H., “Open boundaries in short-wave simulation, a new approach,” Coastal Engineering, Vol. 7, pp. 285-297 (1983).
    (41) Li, Y.S., Liu S.X., Yu Y.X. and Lai G.Z., “Numerical modeling of Boussinesq equations by finite element method,” Coastal Engineering, Vol. 37, pp. 97-122 (1999).
    (42) Liu, P.L.F. and Losada, I.J., “Wave propagation modeling in coastal engineering,” Journal of Hydraulic Research, IAHR, Vol. 40, No. 3, pp. 229-240 (2002).
    (43) Lynett, P.J., Wu, T.R. and Liu, L.F., “Modeling wave runup with depth–integrated equations,” Coastal Engineering, Vol. 46, pp. 89-107 (2002).
    (44) Madsen, P.A., Murray, R. and Sørensen, O.R., “A new form of the Boussinesq equations with improved linear dispersion characteristics,” Coastal Engineering, Vol. 15, No. 4, pp. 371-388 (1991).
    (45) Madsen, P.A. and Sørensen, O.R., “A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2: A slowly-varying bathemetry,” Coastal Engineering, Vol. 18, pp. 183-204 (1992).
    (46) Madsen, P.A., Sørensen, O.R. and Schäffer, H.A., “Surf zone dynamics simulated by a Boussinesq-type model. Part I: Model description and cross-shore motion of regular waves,” Coastal Engineering, Vol. 32, pp. 255-287 (1997a).
    (47) Madsen, P.A., Sørensen, O.R. and Schäffer, H.A., “Surf zone dynamics simulated by a Boussinesq-type model, Part II: Surf beat and swash oscillations for wave groups and irregular waves,” Coastal Engineering, Vol. 32, pp. 289-319 (1997b).
    (48) Madsen, P.A. and Schäffer, H.A., “Higher-order Boussinesq-type equation for surface gravity waves: derivation and analysis,” Philosophical Transactions: Mathematical, Physical and Engineering Sciences, The Royal Society, London, UK, Vol. 356, pp. 3123-3184 (1998).
    (49) Madsen, P.A., Bingham, H.B. and Liu, H., “A new Boussinesq method for fully nonlinear waves from shallow to deep water,” Journal of Fluid Mechanics, Vol. 462, pp. 1-30 (2002).
    (50) Madsen, P.A. and Agnon, Y., “Accuracy and convergence of velocity formulations for water waves in the framework of Boussinesq theory,” Journal of Fluid Mechanics, Vol. 477, pp. 285-319 (2003).
    (51) Mase, H. and Iwagaki, Y., “Wave height distribution and wave grouping in surf zone,” Proceedings of 18th International Conference on Coastal Engineering, pp. 57-78 (1982).
    (52) Mase, H., “Frequency down-shift of swash oscillation compared to incident waves,” Journal of Hydraulic Research, Delft, The Netherlands, Vol. 33, No. 3, pp. 397-411 (1995).
    (53) Mei, C.C., “Resonant reflection of surface waves by periodic sandbars,” Journal of Fluid Mechanics, Vol. 152, 315-335 (1985).
    (54) Mei, C.C., The applied dynamics of ocean surface waves, World Scientific (1989).
    (55) Miche, R., “Le pouvoir reflechissant des ourvrages maritime exposes a l’action de la houle,” Ann. Ponts et Chausses , 121e Annee, pp. 285-319 (1951).
    (56) Miles, J., “Oblique surface-wave diffraction by a cylindrical obstacle,” Dynamics of Atmospheres and Oceans, Vol. 6, pp. 121-123 (1981).
    (57) Miles, J., “On gravity-wave scattering by non-secular changes in depth,” Journal of Fluid Mechanics, Vol. 376, pp. 53-60 (1998).
    (58) Misra, S.K., Kennedy, A.B. and Kirby, J.T., “An approach to determining nearshore bathymetry using remotely sensed ocean surface dynamics,” Coastal Engineering, Vol. 47, pp. 265-293 (2003).
    (59) Nadaoka, K. and Raveenthiran, K.,“A phase-averaged Boussinesq model with effective description of carrier wave group and associated long wave evolution,”Ocean Engineering, Vol. 29, pp. 21-37 (2002).
    (60) Nagayama, S., “Study on the change of wave height and energy in the surf zone,” Bachelor thesis, Yokohama National University (1983).
    (61) Nwogu, O., “An alternative form of the Boussinesq equations for modeling the propagation of waves from deep to shallow water,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 119, No. 6, pp. 618-638 (1993).
    (62) Ozanne, F., Chadwick, A.J., Huntley, D.A., Simmonds, D.J. and Lawrence, J., “Velocity predictions for shoaling and breaking waves with a Boussinesq-type model,” Coastal Engineering, Vol. 41, pp. 361-397 (2000).
    (63) Peregrine, D.H., “Long waves on a beach,” Journal of Fluid Mechanics, Vol. 27, No. 4, pp. 815-827 (1967).
    (64) Petera, J. and Nassehi, V., “A new two-dimensional finite element model for the shallow water equations using a Lagrangian framework constructed along fluid particle trajectories,” International Journal for Numerical Methods in Engineering, Vol. 39, 4159-4182 (1996).
    (65) Rajaratnam, N., Hydraulic Jumps, Adv. Hydrosci., Vol. 4, pp. 197-280 (1967).
    (66) Saville, T. Jr., “Wave run-up on shore structures,” Journal of the Waterways and Harbors Division, WW2, ASCE, Vol. 82, pp. 373-384 (1956).
    (67) Schäffer, H.A., Madsen, P.A. and Deigaard, R., “A Boussinesq model for waves breaking in shallow water,” Coastal Engineering, Vol. 20, pp. 185-202 (1993).
    (68) Schäffer, H.A. and Madsen, P.A., “Further enhancements of Boussinesq-type equations,” Coastal Engineering, Vol. 26, pp. 1-14 (1995).
    (69) Shi, .F, Dalrymple, R.A., Kirby, J.T., Chen, Q. and Kennedy, A.B., “A fully nonlinear Boussinesq model in generalized curvilinear coordinates,” Coastal Engineering, Vol. 42, pp. 337-358 (2001).
    (70) Shi, F., Kirby, J.T., Dalrymple, R.A. and Chen, Q., “Wave simulations in Ponce de Leon inlet using Boussinesq model,” J. Waterway, Port, Coastal and Ocean Engineering, Vol. 129, No. 3, pp. 124-135 (2003).
    (71) Skotner, C. and Apelt, C.J., “Application of a Boussinesq model for the computation of breaking waves. Part 1. Development and verification,” Ocean Engineering, Vol. 26, pp. 905-925 (1999a).
    (72) Skotner, C. and Apelt, C.J., “Application of a Boussinesq model for the computation of breaking waves. Part 2. Wave-induced setdown and setup on a submerged coral reef,” Ocean Engineering, Vol. 26, pp. 927-947 (1999b).
    (73) Stokes, G.G., “On the theory of oscillatory waves,” Transactions of the Cambridge Philosophical Society, Vol. 8, pp. 441-455 (1847).
    (74) Synolakis, C.E., “The run-up of long waves,” Ph.D. thesis, Calif. Inst. Technol., Pasadena, Calif. (1986).
    (75) Tao, J., “Computation of wave run-up and breaking,” Internal Report, Danish Hydraullics Institute, Horsholm Denmark (1983).
    (76) Tao, J., “Numerical modeling of wave runup and breaking on the beach,” Acta Oceanologica Sinica, Beijing, Vol. 6, No. 5, pp. 692-700 (1984).
    (77) Tsai, C.P., Chen, H.B. and Hsu, J.R.C., “Calculations of wave transformation across the surf zone,” Ocean Engineering, Vol. 28, pp. 941-955 (2001).
    (78) Wei, G., Kirby, J.T. and Sinha, A., “Generation of waves in Boussinesq models using a source function method,” Coastal Engineering, Vol. 36, pp. 271-299 (1999).
    (79) Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R., “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,” Journal of Fluid Mechanics, Vol. 294, pp.71-92 (1995).
    (80) Wei, G. and Kirby, J.T., “Time-dependent numerical code for extended Boussinesq equations,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 121, pp. 251-263 (1995).
    (81) Witting, J.M., “A unified model for the evolution of nonlinear water waves,” Journal of Computational Physics, Vol. 56, pp. 203-236 (1984).
    (82) Zelt, J.A., “The run-up of nonbreaking and breaking solitary waves,” Coastal Engineering, Vol. 15, pp. 205-245 (1991).
    (83) 蔡清標、陳鴻彬、許修党,「碎波帶波高變化之計算」,港灣技術,第十期,第 93-111 頁 (1995)。
    (84) 陳陽益,「規則前進重力波傳遞於波形底床上」,港灣技術,第七期,第 17-47 頁 (1992)。
    (85) 張憲國、許泰文、李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台中,第 242-249 頁 (1997)。
    (86) 許泰文、藍元志、蔡金晏,「有限元素法波場模式之延伸」,第二十四屆海洋工程研討會論文集,梧棲,第 34-41 頁 (2002)。

    下載圖示 校內:立即公開
    校外:2005-02-15公開
    QR CODE