| 研究生: |
楊翊羣 Yang, Yi-Chun |
|---|---|
| 論文名稱: |
以斑馬魚模式探討不同表面修飾奈米氧化鋅微粒之發育毒性 The developmental toxicity of different surface modification of zinc oxide nanoparticles by using zebrafish model |
| 指導教授: |
王應然
Wang, Ying-Jan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 奈米氧化鋅微粒 、表面修飾斑馬魚 、肝臟毒性 、細胞凋亡 、自體吞噬 |
| 外文關鍵詞: | nano-znic oxide, surface modification, zebrafish, liver toxicity, apoptosis, autophagy |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米氧化鋅因具有化學穩定性高、電耦合係數高、輻射吸收度廣且光穩定性高等優點而被廣泛應用在許多產品中。然而近期研究指出奈米氧化鋅對於人類健康與環境中野生動物皆會導致許多不良的影響。目前已知奈米氧化鋅會對多種器官造成損傷,但對於肝臟毒性機轉資訊仍不足,且缺乏可用以推估生物體及潛在生態影響的長時間暴露毒理相關資訊。斑馬魚模式是一個適用於評估生物體潛在傷害的良好模式,其優點包含可在短時間大量繁殖、胚胎發育時間快、觀察不同發育階段之變化等優勢,也因此本研究利用斑馬魚模式探討自行製備之不同表面修飾奈米氧化鋅包含Amnie-modified zinc oxide nanoparticles(NH2-ZnO NPs)與Carboxylated zinc oxide nanoparticles (COOH-ZnO NPs),以及商品化塊材氧化鋅探討胚胎發育毒性、稚魚急毒性與早期生命週期發育毒性測試的影響。首先,透過物化特性的測定可以分析出奈米氧化鋅微粒NH2- ZnO NPs與COOH-ZnO NPs之物化特性大致相同,而電位分別為31.5 mV與-31.8 mV呈現相反帶電性。毒性研究結果指出,暴露NH2-ZnO NPs和COOH-ZnO NPs之存活率會依照濃度增加而下降,比較三種材料之毒性效應,其毒性強度依序為NH2- ZnO NPs > COOH-ZnO NPs > Bulk ZnO。另外於研究中亦發現NH2- ZnO NPs與COOH-ZnO NPs均會引起尾鰭畸形、體軸彎曲、眼睛畸形、心苞腫脹、卵黃囊腫及充血等畸形的產生,而於分子機轉上觀察到奈米氧化鋅微粒會造成肝臟之氧化壓力上升,並且誘導細胞凋亡與細胞自體吞噬作用的產生。綜合以上結果證實,透過多種不同暴露模式的分析,可以提供較精確的奈米氧化鋅急毒性資訊,此外,本研究也進一步提供奈米氧化鋅暴露所造成的肝臟毒性機轉變化,有助於瞭解奈米誘發的氧化壓力及細胞凋亡/細胞自噬在肝毒性機制的角色。
Nano-scale zinc oxide (nano-ZnO), due to their unique properties such as high chemical stability, high electrochemical coupling coefficient, broad range of radiation absorption and high photostability, has been widely applied in many products. Unfortunately, recent studies indicated that nano-ZnO may have adverse impacts on human health and environmental species, however, the available toxicological information is still limited to assess the potential ecological risk of nano-ZnO to organisms and the publics. In this study, we used zebrafish as an in vivo model to investigate toxicity of amino- and carboxy- coated nano-ZnO during embryo stages, larva stages and first-life stages. Then we investigate the toxic mechanisms of nano-ZnO induced liver damage. The results indicated that the order of toxicity levels from high to low are amino-modified nano-ZnO, carboxylated nano-ZnO and bulk ZnO using the assay of survival rate. Besides, we found that exposure of those two nano-ZnO led to malformation, including zebrafish tail deformity, trunk malformation, eye malformation, heart malformation, yolk sac edema, and hyperaemia. In addition, the toxic mechanisms of nano-ZnO induced liver damage may include oxidative stress and then trigger apoptosis and autophagy. Taken together, by using different developmental stages model to compare the survival rate of the nano-ZnO , we can achieve more solid information of acute toxicity. We also provided the possible toxic mechanisms of nano-ZnO induced liver damage which can offer substantial insight of hepatotoxicity through modulation of oxidative stress, apoptosis and autophagy.
économiques, O. d. c. e. d. d. (2013). Test No. 210: Fish, Early-life Stage Toxicity Test, OECD Publishing.
économiques, O. d. c. e. d. d. (2013). Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Publishing.
Alderton, W., S. Berghmans, P. Butler, H. Chassaing, A. Fleming, Z. Golder, F. Richards and I. Gardner (2010). "Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae." Xenobiotica 40(8): 547-557.
Amatruda, J. F., J. L. Shepard, H. M. Stern and L. I. Zon (2002). "Zebrafish as a cancer model system." Cancer cell 1(3): 229-231.
Arvizo, R. R., O. R. Miranda, M. A. Thompson, C. M. Pabelick, R. Bhattacharya, J. D. Robertson, V. M. Rotello, Y. Prakash and P. Mukherjee (2010). "Effect of nanoparticle surface charge at the plasma membrane and beyond." Nano letters 10(7): 2543.
Bai, W., Z. Zhang, W. Tian, X. He, Y. Ma, Y. Zhao and Z. Chai (2010). "Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism." Journal of Nanoparticle Research 12(5): 1645-1654.
Baker, R. E., S. Schnell and P. K. Maini (2009). "Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies." The International journal of developmental biology 53: 783.
Bar-Ilan, O., C. C. Chuang, D. J. Schwahn, S. Yang, S. Joshi, J. A. Pedersen, R. J. Hamers, R. E. Peterson and W. Heideman (2013). "TiO2 nanoparticle exposure and illumination during zebrafish development: Mortality at parts per billion concentrations." Environmental science & technology 47(9): 4726-4733.
Barresi, M., H. L. Stickney and S. H. Devoto (2000). "The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity." Development 127(10): 2189-2199.
Barut, B. A. and L. I. Zon (2000). "Realizing the potential of zebrafish as a model for human disease." Physiological Genomics 2(2): 49-51.
Berry, J. P., M. Gantar, P. D. Gibbs and M. C. Schmale (2007). "The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae." Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 145(1): 61-72.
Betancourt-Galindo, R., M. Berlanga Duarte, B. A. Puente Urbina, O. S. Rodríguez-Fernández and S. Sánchez-Valdés (2010). Surface modification of ZnO nanoparticles. Materials Science Forum, Trans Tech Publ.
Boess, F., M. Kamber, S. Romer, R. Gasser, D. Muller, S. Albertini and L. Suter (2003). "Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems." Toxicological Sciences 73(2): 386-402.
Bohnsack, J. P., S. Assemi, J. D. Miller and D. Y. Furgeson (2012). "The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model." Nanotoxicity: Methods and Protocols: 261-316.
Boussif, O., F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix and J.-P. Behr (1995). "A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine." Proceedings of the National Academy of Sciences 92(16): 7297-7301.
Boxall, A. B., Q. Chaudhry, C. Sinclair, A. Jones, R. Aitken, B. Jefferson and C. Watts (2007). "Current and future predicted environmental exposure to engineered nanoparticles." Central Science Laboratory, Department of the Environment and Rural Affairs, London, UK 89.
Bozich, J. S., S. E. Lohse, M. D. Torelli, C. J. Murphy, R. J. Hamers and R. D. Klaper (2014). "Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna." Environmental Science: Nano 1(3): 260-270.
Brun, N. R., M. Lenz, B. Wehrli and K. Fent (2014). "Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions." Science of the Total Environment 476: 657-666.
Brunner, T. J., P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink and W. J. Stark (2006). "In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility." Environmental science & technology 40(14): 4374-4381.
Brustein, E., L. Saint-Amant, R. R. Buss, M. Chong, J. R. McDearmid and P. Drapeau (2003). "Steps during the development of the zebrafish locomotor network." Journal of physiology-Paris 97(1): 77-86.
Chargui, A., S. Zekri, G. Jacquillet, I. Rubera, M. Ilie, A. Belaid, C. Duranton, M. Tauc, P. Hofman and P. Poujeol (2011). "Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure." Toxicological Sciences 121(1): 31-42.
Chen, L., Y. Miao, L. Chen, P. Jin, Y. Zha, Y. Chai, F. Zheng, Y. Zhang, W. Zhou and J. Zhang (2013). "The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots." Biomaterials 34(38): 10172-10181.
Chen, R., L. Huo, X. Shi, R. Bai, Z. Zhang, Y. Zhao, Y. Chang and C. Chen (2014). "Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation." ACS nano 8(3): 2562-2574.
Chen, Z., H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye and F. Zhao (2006). "Acute toxicological effects of copper nanoparticles in vivo." Toxicology letters 163(2): 109-120.
Chng, H. T., H. K. Ho, C. W. Yap, S. H. Lam and E. C. Y. Chan (2012). "An investigation of the bioactivation potential and metabolism profile of Zebrafish versus human." Journal of biomolecular screening 17(7): 974-986.
Cho, W.-S., R. Duffin, S. E. Howie, C. J. Scotton, W. A. Wallace, W. MacNee, M. Bradley, I. L. Megson and K. Donaldson (2011). "Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn 2+ dissolution inside lysosomes." Particle and fibre toxicology 8(1): 27.
Cho, W.-S., R. Duffin, F. Thielbeer, M. Bradley, I. L. Megson, W. MacNee, C. A. Poland, C. L. Tran and K. Donaldson (2012). "Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal-oxide nanoparticles." Toxicological Sciences: kfs006.
Choi, J. E., S. Kim, J. H. Ahn, P. Youn, J. S. Kang, K. Park, J. Yi and D.-Y. Ryu (2010). "Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish." Aquatic Toxicology 100(2): 151-159.
Co-operation, O. f. E. and Development (1992). Test No. 203: Fish, Acute Toxicity Test, OECD Publishing.
Cox, A. G., D. C. Saunders, P. B. Kelsey, A. A. Conway, Y. Tesmenitsky, J. F. Marchini, K. K. Brown, J. S. Stamler, D. B. Colagiovanni and G. J. Rosenthal (2014). "S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury." Cell reports 6(1): 56-69.
Daughton, C. G. and T. A. Ternes (1999). "Pharmaceuticals and personal care products in the environment: agents of subtle change?" Environmental health perspectives 107(Suppl 6): 907.
de Esch, C., R. Slieker, A. Wolterbeek, R. Woutersen and D. de Groot (2012). "Zebrafish as potential model for developmental neurotoxicity testing: a mini review." Neurotoxicology and teratology 34(6): 545-553.
Driessen, M., A. S. Kienhuis, J. L. Pennings, T. E. Pronk, E.-J. van de Brandhof, M. Roodbergen, H. P. Spaink, B. van de Water and L. T. van der Ven (2013). "Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling." Archives of toxicology 87(5): 807-823.
Driessen, M., A. P. Vitins, J. L. Pennings, A. S. Kienhuis, B. van de Water and L. T. van der Ven (2015). "A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen." Toxicology letters 232(2): 403-412.
Ekor, M., A. O. Odewabi, O. E. Kale, T. O. Bamidele, O. A. Adesanoye and E. O. Farombi (2013). "Modulation of paracetamol-induced hepatotoxicity by phosphodiesterase isozyme inhibition in rats: a preliminary study." Journal of basic and clinical physiology and pharmacology 24(1): 73-79.
Elferink, M., P. Olinga, A. Draaisma, M. Merema, S. Bauerschmidt, J. Polman, W. Schoonen and G. Groothuis (2008). "Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity." Toxicology and applied pharmacology 229(3): 300-309.
Fako, V. E. and D. Y. Furgeson (2009). "Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity." Advanced drug delivery reviews 61(6): 478-486.
Field, H. A., E. A. Ober, T. Roeser and D. Y. Stainier (2003). "Formation of the digestive system in zebrafish. I. Liver morphogenesis." Developmental biology 253(2): 279-290.
Finn, R. N. and B. Kapoor (2008). Fish larval physiology, Science Publishers, Inc.
Finney, J. L., G. N. Robertson, C. A. McGee, F. M. Smith and R. P. Croll (2006). "Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio)." Journal of Comparative Neurology 495(5): 587-606.
Fleming, A. and D. C. Rubinsztein (2011). "Zebrafish as a model to understand autophagy and its role in neurological disease." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1812(4): 520-526.
George, S., S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley and L. Mädler (2009). "Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping." ACS nano 4(1): 15-29.
George, S., T. Xia, R. Rallo, Y. Zhao, Z. Ji, S. Lin, X. Wang, H. Zhang, B. France and D. Schoenfeld (2011). "Use of a high-throughput screening approach coupled with in
vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials." ACS nano 5(3): 1805-1817.
Glass, A. S. and R. Dahm (2004). "The zebrafish as a model organism for eye development." Ophthalmic research 36(1): 4-24.
Goldstone, J. V., A. G. McArthur, A. Kubota, J. Zanette, T. Parente, M. E. Jönsson, D. R. Nelson and J. J. Stegeman (2010). "Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish." BMC genomics 11(1): 643.
Gottschalk, F., T. Sonderer, R. W. Scholz and B. Nowack (2009). "Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions." Environmental science & technology 43(24): 9216-9222.
Guillouzo, A., A. Corlu, C. Aninat, D. Glaise, F. Morel and C. Guguen-Guillouzo (2007). "The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics." Chemico-biological interactions 168(1): 66-73.
Guo, L., J. Nie, B. Du, Z. Peng, B. Tesche and K. Kleinermanns (2008). "Thermoresponsive polymer-stabilized silver nanoparticles." Journal of colloid and interface science 319(1): 175-181.
Halliwell, B. and S. Chirico (1993). "Lipid peroxidation: its mechanism, measurement, and significance." The American journal of clinical nutrition 57(5): 715S-724S.
Hao, L., L. Chen, J. Hao and N. Zhong (2013). "Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts." Ecotoxicology and environmental safety 91: 52-60.
Harper, B., D. Thomas, S. Chikkagoudar, N. Baker, K. Tang, A. Heredia-Langner, R. Lins and S. Harper (2015). "Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity." Journal of Nanoparticle Research 17(6): 250.
He, C. and D. J. Klionsky (2009). "Regulation mechanisms and signaling pathways of autophagy." Annual review of genetics 43: 67-93.
Heinlaan, M., A. Ivask, I. Blinova, H.-C. Dubourguier and A. Kahru (2008). "Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus." Chemosphere 71(7): 1308-1316.
Her, G. M., C.-C. Chiang, W.-Y. Chen and J.-L. Wu (2003). "In vivo studies of liver‐type fatty acid binding protein (L‐FABP) gene expression in liver of transgenic
zebrafish (Danio rerio)." FEBS letters 538(1-3): 125-133.
Hill, A., N. Mesens, M. Steemans, J. J. Xu and M. D. Aleo (2012). "Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development." Drug metabolism reviews 44(1): 127-140.
Hill, A. J., S. M. Bello, A. L. Prasch, R. E. Peterson and W. Heideman (2004). "Water permeability and TCDD-induced edema in zebrafish early-life stages." Toxicological Sciences 78(1): 78-87.
Hwang, S.-H., F. Thielbeer, J. Jeong, Y. Han, S. V. Chankeshwara, M. Bradley and W.-S. Cho (2016). "Dual contribution of surface charge and protein-binding affinity to the cytotoxicity of polystyrene nanoparticles in nonphagocytic A549 cells and phagocytic THP-1 cells." Journal of Toxicology and Environmental Health, Part A 79(20): 925-937.
Isogai, S., M. Horiguchi and B. M. Weinstein (2001). "The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development." Developmental biology 230(2): 278-301.
Jaeschke, H., G. J. Gores, A. I. Cederbaum, J. A. Hinson, D. Pessayre and J. J. Lemasters (2002). "Mechanisms of hepatotoxicity." Toxicological sciences 65(2): 166-176.
Kango, S., S. Kalia, A. Celli, J. Njuguna, Y. Habibi and R. Kumar (2013). "Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review." Progress in Polymer Science 38(8): 1232-1261.
Karna, P., S. Zughaier, V. Pannu, R. Simmons, S. Narayan and R. Aneja (2010). "Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent." Journal of Biological Chemistry 285(24): 18737-18748.
Kensler, T. W., N. Wakabayashi and S. Biswal (2007). "Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway." Annu. Rev. Pharmacol. Toxicol. 47: 89-116.
Kienhuis, A. S., M. C. van de Poll, H. Wortelboer, M. van Herwijnen, R. Gottschalk, C. H. Dejong, A. Boorsma, R. S. Paules, J. C. Kleinjans and R. H. Stierum (2009). "Parallelogram approach using rat-human in vitro and rat in vivo toxicogenomics predicts acetaminophen-induced hepatotoxicity in humans." Toxicological sciences 107(2): 544-552.
Kim, H. R., Y. J. Park, C. W. Park, S. M. Oh and K. H. Chung (2014). "Silver nanoparticles induce p53-mediated apoptosis in human bronchial epithelial (BEAS-2B) cells." The Journal of toxicological sciences 39(3): 401-412.
Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling (1995). "Stages of embryonic development of the zebrafish." Developmental dynamics 203(3): 253-310.
Knaapen, A. M., P. J. Borm, C. Albrecht and R. P. Schins (2004). "Inhaled particles and lung cancer. Part A: Mechanisms." International Journal of Cancer 109(6): 799-809.
Kołodziejczak-Radzimska, A. and T. Jesionowski (2014). "Zinc oxide—from synthesis to application: a review." Materials 7(4): 2833-2881.
Kroemer, G., G. Mariño and B. Levine (2010). "Autophagy and the integrated stress response." Molecular cell 40(2): 280-293.
Langheinrich, U. (2003). "Zebrafish: a new model on the pharmaceutical catwalk." Bioessays 25(9): 904-912.
LeCluyse, E. L., R. P. Witek, M. E. Andersen and M. J. Powers (2012). "Organotypic liver culture models: meeting current challenges in toxicity testing." Critical reviews in toxicology 42(6): 501-548.
Lee, W. M. (2003). "Drug-induced hepatotoxicity." New England Journal of Medicine 349(5): 474-485.
Lele, Z. and P. Krone (1996). "The zebrafish as a model system in developmental, toxicological and transgenic research." Biotechnology advances 14(1): 57-72.
Lewis, K. E. and J. S. Eisen (2003). "From cells to circuits: development of the zebrafish spinal cord." Progress in neurobiology 69(6): 419-449.
Li, C.-H., C.-C. Shen, Y.-W. Cheng, S.-H. Huang, C.-C. Wu, C.-C. Kao, J.-W. Liao and J.-J. Kang (2012). "Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice." Nanotoxicology 6(7): 746-756.
Li, J., Y. Liang, X. Zhang, J. Lu, J. Zhang, T. Ruan, Q. Zhou and G. Jiang (2011). "Impaired gas bladder inflation in zebrafish exposed to a novel heterocyclic brominated flame retardant tris (2, 3-dibromopropyl) isocyanurate." Environmental science & technology 45(22): 9750-9757.
Lin, S., Y. Zhao, A. E. Nel and S. Lin (2013). "Zebrafish: an in vivo model for nano EHS studies." Small 9(9‐10): 1608-1618.
Lin, W., I. Stayton, Y.-w. Huang, X.-D. Zhou and Y. Ma (2008). "Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549." Toxicological and Environmental Chemistry 90(5): 983-996.
Lister, J. A. (2002). "Development of pigment cells in the zebrafish embryo." Microscopy research and technique 58(6): 435-441.
Liu, X., K. Tang, S. Harper, B. Harper, J. A. Steevens and R. Xu (2013). "Predictive modeling of nanomaterial exposure effects in biological systems."
Lou, X., H. Shen and Y. Shen (1991). "Development of ZnO series ceramic semiconductor gas sensors." J. Sens. Trans. Technol 3(1).
Müller, F., P. Blader and U. Strähle (2002). "Search for enhancers: teleost models in comparative genomic and transgenic analysis of cis regulatory elements." Bioessays 24(6): 564-572.
Ma, H., P. M. Bertsch, T. C. Glenn, N. J. Kabengi and P. L. Williams (2009). "Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans." Environmental Toxicology and Chemistry 28(6): 1324-1330.
Ma, H., N. Kabengi, P. Bertsch, J. Unrine, T. Glenn and P. Williams (2011). "Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size." Environmental Pollution 159(6): 1473-1480.
Ma, H., P. L. Williams and S. A. Diamond (2013). "Ecotoxicity of manufactured ZnO nanoparticles–a review." Environmental pollution 172: 76-85.
Manke, A., L. Wang and Y. Rojanasakul (2013). "Mechanisms of nanoparticle-induced oxidative stress and toxicity." BioMed research international 2013.
McCollum, C. W., N. A. Ducharme, M. Bondesson and J. A. Gustafsson (2011). "Developmental toxicity screening in zebrafish." Birth Defects Research Part C: Embryo Today: Reviews 93(2): 67-114.
Meng, H., Z. Chen, G. Xing, H. Yuan, C. Chen, F. Zhao, C. Zhang and Y. Zhao (2007). "Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles." Toxicology letters 175(1): 102-110.
Mennecozzi, M., B. Landesmann, G. A. Harris, R. Liska and M. Whelan (2012). "Hepatotoxicity screening taking a mode-of-action approach using HepaRG cells and HCA." Altex Proc 1: 193-204.
Mironava, T., M. Hadjiargyrou, M. Simon, V. Jurukovski and M. H. Rafailovich (2010). "Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time." Nanotoxicology 4(1): 120-137.
Mizushima, N., B. Levine, A. M. Cuervo and D. J. Klionsky (2008). "Autophagy fights disease through cellular self-digestion." Nature 451(7182): 1069-1075.
Monteiro-Riviere, N. A. and C. L. Tran (2014). Nanotoxicology: progress toward nanomedicine, CRC press.
Mukhi, S., X. Pan, G. P. Cobb and R. Patino (2005). "Toxicity of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine to larval zebrafish (Danio rerio)." Chemosphere 61(2): 178-185.
Navarro, E., A. Baun, R. Behra, N. B. Hartmann, J. Filser, A.-J. Miao, A. Quigg, P. H. Santschi and L. Sigg (2008). "Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi." Ecotoxicology 17(5): 372-386.
Nel, A., T. Xia, L. Mädler and N. Li (2006). "Toxic potential of materials at the nanolevel." science 311(5761): 622-627.
Ng, A. N., T. A. de Jong-Curtain, D. J. Mawdsley, S. J. White, J. Shin, B. Appel, P. D. S. Dong, D. Y. Stainier and J. K. Heath (2005). "Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis." Developmental biology 286(1): 114-135.
Nornes, S., M. Clarkson, I. Mikkola, M. Pedersen, A. Bardsley, J. P. Martinez, S. Krauss and T. Johansen (1998). "Zebrafish contains two pax6 genes involved in eye development." Mechanisms of development 77(2): 185-196.
O’brien, P., W. Irwin, D. Diaz, E. Howard-Cofield, C. Krejsa, M. Slaughter, B. Gao, N. Kaludercic, A. Angeline and P. Bernardi (2006). "High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening." Archives of toxicology 80(9): 580-604.
Osmond, M. J. and M. J. Mccall (2010). "Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard." Nanotoxicology 4(1): 15-41.
Pallardy, M., A. Biola, H. Lebrec and J. Bréard (1999). "Assessment of apoptosis in xenobiotic-induced immunotoxicity." Methods 19(1): 36-47.
Parichy, D. M., M. R. Elizondo, M. G. Mills, T. N. Gordon and R. E. Engeszer (2009). "Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish." Developmental Dynamics 238(12): 2975-3015.
Powers, C. M., J. Yen, E. A. Linney, F. J. Seidler and T. A. Slotkin (2010). "Silver exposure in developing zebrafish (Danio rerio): Persistent effects on larval behavior and survival." Neurotoxicology and teratology 32(3): 391-397.
Ribas, L. and F. Piferrer (2014). "The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research." Reviews in Aquaculture 6(4): 209-240.
Risom, L., P. Møller and S. Loft (2005). "Oxidative stress-induced DNA damage by particulate air pollution." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 592(1): 119-137.
Robertson, G., C. McGee, T. Dumbarton, R. Croll and F. Smith (2007). "Development of the swimbladder and its innervation in the zebrafish, Danio rerio." Journal of Morphology 268(11): 967-985.
Roy, R., M. Das and P. D. Dwivedi (2015). "Toxicological mode of action of ZnO nanoparticles: impact on immune cells." Molecular immunology 63(2): 184-192.
Roy, R., S. K. Singh, L. Chauhan, M. Das, A. Tripathi and P. D. Dwivedi (2014). "Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition." Toxicology letters 227(1): 29-40.
Scarlett, A., H. Reinardy, T. Henry, C. West, R. Frank, L. Hewitt and S. Rowland (2013). "Acute toxicity of aromatic and non-aromatic fractions of naphthenic acids extracted from oil sands process-affected water to larval zebrafish." Chemosphere 93(2): 415-420.
Scholz, S., S. Fischer, U. Gündel, E. Küster, T. Luckenbach and D. Voelker (2008). "The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing." Environmental Science and Pollution Research 15(5): 394-404.
Segets, D., J. Gradl, R. K. Taylor, V. Vassilev and W. Peukert (2009). "Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy." ACS nano 3(7): 1703-1710.
Seo, H.-C., Ø. Drivenes, S. Ellingsen and A. Fjose (1998). "Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia." Mechanisms of development 73(1): 45-57.
Sharma, V., D. Anderson and A. Dhawan (2012). "Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2)." Apoptosis 17(8): 852-870.
Sharma, V., P. Singh, A. K. Pandey and A. Dhawan (2012). "Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 745(1): 84-91.
Sheth, P., H. Sandhu, D. Singhal, W. Malick, N. Shah and M. Serpil Kislalioglu (2012). "Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production." Current drug delivery 9(3): 269-284.
Simmons, S. O., C.-Y. Fan and R. Ramabhadran (2009). "Cellular stress response pathway system as a sentinel ensemble in toxicological screening." Toxicological sciences: kfp140.
Song, B., S. Choi and J. Han (2003). "Developmental dynamics: an official publication of the American Association of Anatomists." Dev Dyn 227(1): 91-103.
Spitsbergen, J. M. and M. L. Kent (2003). "The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations." Toxicologic pathology 31(1_suppl): 62-87.
Stainier, D. Y. (2001). "Zebrafish genetics and vertebrate heart formation." Nature Reviews Genetics 2(1): 39-48.
Suganthi, P., M. Murali, S. M. HE, H. Basu and R. Singhal (2015). "Morphological and liver histological effects of ZnO nanoparticles on mozambique tilapia." JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH 1(1): 68-83.
Tang, E., G. Cheng and X. Ma (2006). "Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles." Powder Technology 161(3): 209-214.
Tao, T. and J. Peng (2009). "Liver development in zebrafish (Danio rerio)." Journal of Genetics and Genomics 36(6): 325-334.
Tolaymat, T. M., A. M. El Badawy, A. Genaidy, K. G. Scheckel, T. P. Luxton and M. Suidan (2010). "An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers." Science of the Total Environment 408(5): 999-1006.
Valdiglesias, V., C. Costa, G. Kiliç, S. Costa, E. Pásaro, B. Laffon and J. P. Teixeira (2013). "Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles." Environment international 55: 92-100.
Venugopal, B. and T. D. Luckey (1978). Metal toxicity in mammals. Volume 2. Chemical toxicity of metals and metalloids, Plenum Press.
Wang, B., W. Feng, M. Wang, T. Wang, Y. Gu, M. Zhu, H. Ouyang, J. Shi, F. Zhang and Y. Zhao (2008). "Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice." Journal of Nanoparticle Research 10(2): 263-276.
Wang, W.-D., G.-T. Chen, H.-J. Hsu and C.-Y. Wu (2015). "Aryl hydrocarbon receptor 2 mediates the toxicity of Paclobutrazol on the digestive system of zebrafish embryos." Aquatic Toxicology 159: 13-22.
Wang, Z. L. (2004). "Zinc oxide nanostructures: growth, properties and applications." Journal of Physics: Condensed Matter 16(25): R829.
WEI, Y. H., C. Y. LU, H. C. LEE, C. Y. PANG and Y. S. MA (1998). "Oxidative damage and mutation to mitochondrial DNA and age‐dependent decline of mitochondrial respiratory function." Annals of the New York Academy of Sciences 854(1): 155-170.
Whitfield, T. T., B. B. Riley, M. Y. Chiang and B. Phillips (2002). "Development of the zebrafish inner ear." Developmental dynamics 223(4): 427-458.
Xia, T., M. Kovochich, M. Liong, J. I. Zink and A. E. Nel (2007). "Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways." ACS nano 2(1): 85-96.
Xiong, D., T. Fang, L. Yu, X. Sima and W. Zhu (2011). "Effects of nano-scale TiO 2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage." Science of the Total environment 409(8): 1444-1452.
Xu, M., C. R. Bahl, C. Frandsen and S. Morup (2004). "Interparticle interactions in agglomerates of alpha-Fe2O3 nanoparticles: influence of grinding." J Colloid Interface Sci 279(1): 132-136.
Yamashita, M. (2003). "Apoptosis in zebrafish development." Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136(4): 731-742.
Yang, L., J. R. Kemadjou, C. Zinsmeister, M. Bauer, J. Legradi, F. Müller, M. Pankratz, J. Jäkel and U. Strähle (2007). "Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo." Genome biology 8(10): R227.
Yu, K.-N., T.-J. Yoon, A. Minai-Tehrani, J.-E. Kim, S. J. Park, M. S. Jeong, S.-W. Ha, J.-K. Lee, J. S. Kim and M.-H. Cho (2013). "Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation." Toxicology in Vitro 27(4): 1187-1195.
Zhao, X., X. Ren, R. Zhu, Z. Luo and B. Ren (2016). "Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos." Aquatic Toxicology 180: 56-70.
Zhao, X., S. Wang, Y. Wu, H. You and L. Lv (2013). "Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish." Aquatic toxicology 136: 49-59.
Zhu, X., L. Zhu, Z. Duan, R. Qi, Y. Li and Y. Lang (2008). "Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage." Journal of Environmental Science and Health, Part A 43(3): 278-284.
校內:2022-08-10公開