| 研究生: |
郭基煌 Kuo, Chi-Huang |
|---|---|
| 論文名稱: |
使用混沌金鑰串流於REC/RPB架構之多重安全性MPEG視訊加密 Multiple Security Encryption of MPEG Video Based on the REC/RPB Scheme with Chaotic Key Stream |
| 指導教授: |
陳進興
Chen, Chin-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 混沌 、加密 、多媒體 |
| 外文關鍵詞: | chaos, encryption, multimedia |
| 相關次數: | 點閱:49 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在多媒體世界裡,影像和視訊加密扮演著越來越重要的角色。為了保護文件資料而發展的演算法並不適合於多媒體,因為多媒體資料量大且有即時的限制。多媒體的資料量很大但是資料的價值較小,這和軍事機密與商業資訊有所不同。現在多媒體加密的趨勢是結合加密在壓縮的過程中。另一方面,混沌現象在自然界具有普遍性,混沌理論和密碼學有緊密的關係,混沌理論已被使用在訊號加密的架構上。
本論文以修改前人提出的REC/RPB架構為基礎,提出了一多重安全性混沌加/解密架構,使使用者可以根據需要選擇三種不同安全性的加密等級。我們以一混沌系統取代REC/RPB的MD5雜湊函數來產生金鑰流。我們證實所使用的混沌金鑰流在金鑰空間大小、串流週期、假隨機數列的隨機性以及串流相關性等特性上均滿足做為一加密金鑰的要求。
本論文提出的多重安全性加密架構經實驗測試的結果顯示加密影像的PSNR均低於8dB。低安全性架構、中安全性架構、高安全性架構的加密的時間分別佔整個壓縮時間的3.78%、4.71%和14.43%(反之,熵編碼後再加密的加密時間佔整個壓縮時間的19.72%)。低安全性的加密架構可以抵禦已知密文攻擊,中安全性的加密架構可以抵禦已知密文攻擊、已知明文攻擊和選擇性明文攻擊,而高安全性加密比中安全性加密更安全。
Image and video encryption plays a more and more important role in today’s multimedia world. The encryption algorithms developed for text data are not suitable for multimedia applications because of large data size and real time constraint. Different from military secrets or financial information, the information rate of multimedia is very high, but information value is relatively low. Recent trends in multimedia encryption research has placed more attention on integrating encryption with compression. Chaos was observed since 1970s in many different research areas, such as physics, mathematics, biology and chemistry, etc. There exists tight relationship between chaos theory and cryptography. Chaotic signal has also been applied to video encryption.
Based on modifying the REC/RPB scheme, this thesis proposed a multiple security chaos-based encryption/decryption scheme in which users can select three different security levels according to their demands. The keystream generator uses Zhu’s chaos-based stream cipher instead of the MD5 hash function because the latter could not withstand the birthday attack. We analyzed the Zhu’s chaos-based stream cipher and showed that it’s key space size、stream period、randomness of pseudorandom sequences as well as correlation prosperities of streams all meet the requirements as a key generator.
The proposed multiple security chaos-based encryption scheme are tested on video data and the results show that the encrypted image’s PSNR is below 8 dB, the time spent on encryption with low security level、medium security level and high security level is 3.78%、4.71% and 14.43% of the total computation time respectively (the encryption time by encrypting the entropy encoder’s output is 19.72% of the total computation time). The low-level encryption can withstand ciphertext-only attacks, the medium-level encryption can withstand ciphertext-only attacks、known plaintext attacks and chosen plaintext attacks, and the high-level encryption security is more secure than the medium-level encryption.
[1]G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol.16, No.8, Pages: 2129-2151, 2006.
[2]B. Bhargava, C. Shi, and Y. Wang, “MPEG video encryption algorithms,” Multimedia Tools and Applications, 2003.
[3]V. Bhaskaran and K. Konstantinides, “Image and video compression standards, algorithms and architectures,” Kluwer Academic Publishers, 1995.
[4]H. Cheng and X. Li, “On the application of image decomposition to image compression and encryption,” Communications and Multimedia Security II, IFIP TC6/TC11 Second Joint Working Conference on Communications and Multimedia Security, Pages: 116-127, September, 1996.
[5]J. Crutchfield, J. D. Farmer, N. H. Packard and R. S. Shaw, “Chaos,” Scientific American, Vol. 254, Pages: 38-49, 1986.
[6]C. Fu and Z. Zhu, “An improved chaos-based stream cipher algorithm,” Third International Conference on Natural Computation, IEEE, 2007.
[7]B. Furht and D. Kirovski, “Multimedia security handbook,” CRC Press, 2004.
[8]D. Gillman, M, Mohtashemi and R. Rivest, “On breaking a huffman code,” IEEE Trans. Inform. Theory, Vol. 42, No. 3, Pages: 972, May, 1996.
[9]L. Kocarev, “Chaos-based cryptography: a brief overview,” IEEE Circ. Syst. Mag. Pages: 6-21, 2001.
[10]S. Li, “Analyses and new designs of digital chaotic ciphers,” Ph. D thesis, School of Electronics & Information Engineering, Xi’an Jiaotong University, June, 2003.
[11]Y. Li, Z. Chen, S. M. Tan and R. H. Campbell, “Security enhanced MPEG player,” Proceedings of IEEE First International Workshop on Multimedia Software Development, Pages: 169-175, 1996.
[12]S. Lian, J. Sun, J. Wang and Z. Wang, “A chaotic stream cipher and the usage in video protection,” Chaos, Solitons & Fractals, Pages: 851-859, 2007.
[13]G. Lin and L. Chua, “Canonical realization of Chua’s circuit family,” IEEE Trans. Circ. Syst. Pages: 885-902, 1990.
[14]X. Liu and A. M. Eskicioglu, “Selective encryption of multimedia content in distribution networks: Challenges and new directions,” 2nd Int. Conf. Communications, Internet, and Information Technology, Pages: 17-19, November, 2003.
[15]T. D. Lookabaugh, D. C. Sicker, D. M. Keaton, W. Y. Guo and I. Vedula, “Security analysis of selectiveley encrypted MPEG-2 streams,” Multimedia Systems and Applications VI, Vol. 5241, Pages: 10-21, September, 2003.
[16]B. Macq and J. Quisquater, “Cryptoloy for digital TV broadcasting,” IEEE, Vol. 83, No. 6, Pages: 944-957, 1995.
[17]J. Meyer and F. Gadegast, “Security mechanisms for multimedia data with the example MPEG-1 video,” Project Description of SECMPEG, May. 1995.
[18]H. H. Nien, C. K. Huang, S. K. Changchien, H. W. Shieh, C. T. Chen and Y. Y. Tuan, “Digital color image encoding and decoding using a novel chaotic random generator,” Chaos, Solitons and Fractals, Vol. 32, 2007.
[19]N. Pareek, V. Patidar and K. Sud, “Image encryption using chaotic logistic map,” Image and Vision Computing , Vol. 24, No. 9, 2006.
[20]L. Qiao and K. Nahrstedt, “Comparison of MPEG encryption algorithms,” International Journal on Computers and Graphics (Special Issue on Data Security in Image Communication and Networks), Vol. 22, No. 3, Pages: 437-444, 1998.
[21]S. U. Shin, K. S. Sim and K. H. Rhee, “A secrecy scheme for MPEG video data using the joint of compression and encryption,” Proceedings of the 1999 Information Security Workshop, Vol. 1729, Pages: 191-201, November, 1999.
[22]G. Spanos and T. Maples, “Performance study of a selective encryption scheme for the security of networked real-time video,” Proceedings of the 4th International Conference on Computer Communications and Networks, November, 1995.
[23]L. Tang, “Methods for encrypting and decrypting MPEG video data efficiently,” Proceedings of the ACM Multimedia, Pages: 219-229, November, 1996.
[24]A. Uhl and A. Pommer, “Image and video encryption: From digital rights management to secured personal communication,” Springer Science, Business Media Inc, 2005.
[25]J. Wen, M. Severa, Z. Wenjun, M. Luttrell and W. Jin, “A format-compliant
configurable encryption framework for access control of multimedia,” Multimedia Signal Processing, IEEE Fourth Workshop, Pages: 435-440, October, 2001.
[26]J. Wen, M. Severa, W. Zeng, M. Luttrell, and W. Jin, “A format compliant configurable encryption framework for access control of video,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 12, No. 6, Pages: 545-557, June, 2002.
[27]C. P. Wu and C. C. J. Kuo, “Design of integrated multimedia compression and encryption systems,” IEEE Transactions on Multimedia, Vol. 7, No. 5, Pages: 828-839, 2005.
[28]C. P. Wu and C. C. J. Kuo, “Efficient multimedia encryption via entropy codec design,” Security and Watermarking of Multimedia Contents, Vol. 4314, Pages: 128-138, January, 2001.
[29]C. P. Wu and C. C. Jay Kuo, “Fast encryption methods for audiovisual data confidentiality,” SPIE Photonics East - Symposium on Voice, Video, and Data Communications, Vol. 420, Pages: 284-295, November, 2000.
[30]D. Xie and C. C. J. Kuo, “Enhanced multiple Huffman table (MHT) encryption scheme using key hoping,” Proc. ISCAS, Vol. 5, Pages: 568-571, May, 2004.
[31]D. Xie and C. C. J. Kuo, “Multimedia data encryption via random rotation in partitioned bit streams,” Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 5, Pages: 5533-5536, May, 2005.
[32]D. Xie and C. C. J. Kuo, “Multimedia encryption with joint randomized entropy coding and rotation in partitioned bitstream,” European Journal of Information Systems, 2007.
[33]W. Zeng and S. Lei, “Efficient frequency domain video scrambling for content access control,” Proceedings of the seventh ACM International Multimedia Conference, Pages: 285-293, November, 1999.
[34]W. Zeng and S. Lei, “Efficient frequency domain selective scrambling of digital video,” IEEE Transactions on Multimedia, Pages: 118-129, March, 2003.
[35]W. Zeng, J. Wen and M. Severa, “Fast self-synchronous content scrambling by spatially shuffling codewords of compressed bitstreams,” Proceedings of the IEEE International Conference on Image Processing, September, 2002.
[36]J. Zhou, Z. Liang, Y. Chen and O. C. Au, “Security analysis of multimedia encryption schemes based on multiple Huffman table,” IEEE Signal Processing Letters, Vol. 14, No. 3, Pages: 201-204, 2007.
[37]“Coding of moving pictures and associated audio,” Committee Draft Standard ISO/IEC 13818.
[38]“Security requirement for cryptographic modules,” Federal Information Processing Standards Publication (FIPS PUB 140-1), 1994.