簡易檢索 / 詳目顯示

研究生: 潘家慶
Pan, Chia-Ching
論文名稱: 含N-甲基吡咯烷酮廢水之生物處理評估研究
Evaluation of Biological Treatment for Wastewater Containing N-methyl-pyrrolidone
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 101
中文關鍵詞: NMP含氮有機物生物處理厭氧反應器
外文關鍵詞: NMP, nitrogenous organic compounds, biological treatment, anaerobic reactor
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N-甲基吡咯烷酮(N-methyl-pyrrolidone, NMP)為半導體產業中常用到之光阻剝離劑。近年隨著使用量逐漸增加,若不謹慎處理即排放至自然水體可能危害生態環境與人類健康,成為重要的環境課題。
    本研究目的主要係瞭解實廠生物處理系統各單元的效能,並藉由批次實驗與實驗室規模反應槽評估各生物程序處理含NMP廢水的可行性。結果顯示,好氧單元的硝化作用容易受到有機物抑制,當初始NMP濃度高於1000 mg/L時,硝化作用便受到明顯抑制;在缺氧環境下,作為碳源的NMP在高濃度時會造成基質抑制,但是該廠活性污泥可經過馴養後適應,在初始NMP濃度為2000 mg/L時COD與NMP之最大比降解速率分別能達到27.0 g /g VSS-h及 18.2 g /g VSS-h。經過模式模擬評估該廠生物處理系統後,可發現硝化速率慢、有機負荷低以及磷酸鹽的缺少。經建議後該廠提高食微比(F/M)與額外添加磷酸鹽,其生物處理系統整體處理量提高約20%,並且進一步提高總氮的去除。
    而針對含NMP廢水的厭氧降解,實驗室厭氧反應器在249 mg COD/L/d的有機負荷下,可降解含NMP之廢水並有96%以上的COD、NMP去除率;批次實驗的結果亦指出厭氧微生物能夠利用NMP作為唯一碳源產生甲烷與少量二氧化碳,甲烷產率最高可達0.47 L CH4/g COD,顯示未來應用於實廠的可能性。
    關鍵字:NMP、含氮有機物、生物處理、厭氧反應器

    The removal of nitrogenous compounds (e.g., n-methyl-pyrrolidone, NMP) in semiconductor wastewater is getting more concern. The purposes of this study are to investigate the COD removal and nitrogen removal of NMP-containing wastewater in a full-scale wastewater treatment plant and to evaluate the feasibilities for treating NMP-containing wastewater under aerobic, anoxic and anaerobic conditions, respectively.
    Batch results indicate that nitrification was completely inhibited when initial NMP concentration was higher than 1000 mg/L. In anoxic condition, denitrification works after acclimation but was limited at high NMP concentration due to substrate inhibition, where maximum specific degradation rate of COD and NMP could achieve 27.0 g/g VSS-h and 18.2 g/g VSS-h, respectively, with initial NMP concentration of 2000 mg/L. Meanwhile, the organic loading capacity and nitrogen removal were improved in full-scale wastewater treatment plant when increasing Food-to-Microorganism Ratio (F/M) and spiking additional phosphate.
    The results of lab-scale anaerobic reactor show that the anaerobic reactor can degrade NMP-containing wastewater with 96% of removal both on COD and NMP under 249 mg COD/L/d of organic loading capacity. In this study, we also conducted anaerobic batch experiments using NMP as the only carbon source to evaluate the degradability and the biochemical methane potential of NMP in anaerobic condition.
    Keyword: NMP, nitrogenous organic compounds, biological treatment, anaerobic reactor

    摘要 1 Abstract 2 Acknowledge 3 Contents 4 List of Table 6 List of Figure 8 CHAPTER 1. Introduction 1 1.1、 Research Background 1 1.2、 Objectives 3 CHAPTER 2. Literature Review 4 2.1、 Semiconductor Industry 4 2.2、 Characteristic of Semiconductor Industry Wastewater 7 2.3、 Biodegradation of NMP 12 2.2.1. Anaerobic and Anoxic Biodegradation Pathway of NMP 12 2.2.2. NMP-Degradation Microorganisms 16 2.4、 Nitrogen 17 2.4.1 Nitrogen Cycle 17 2.4.2 Ammonification 19 2.4.3 Nitrification 20 2.4.4 Denitrification 21 2.5、 Anaerobic Treatment 24 2.5.1 Comparison of Anaerobic and Aerobic Process 25 2.5.2 Effect Factor of Anaerobic Process 27 CHAPTER 3. Materials and Methods 30 3.1、 Characteristics of Materials 31 3.1.1. Wastewater Treatment Process of Semiconductor Industry Plant 31 3.1.2. Organic Wastewater from Semiconductor Industry 33 3.2、 Anaerobic Bioreactor 35 3.3、 Batch test 37 3.3.1. Nitrification inhibition batch test 38 3.3.2. Batch experiment for different nutrients addition 39 3.3.3. NMP Biodegradation Batch Under Anoxic Condition 41 3.3.4. NMP Adsorption on Sludge 43 3.3.5. Anaerobic batch experiment for NMP degradation 44 3.4、 Analysis method 47 3.4.1. General Water Quality Analysis 47 3.4.2. Instrumental Analysis 48 3.5、 Model Simulation 50 CHAPTER 4. Results and Discussion 51 4.1、 Biological Treatment Process of Semiconductor Factory 51 4.1.1. Inhibition of NMP on Nitrification under Aerobic condition 51 4.1.2. Effect of Adding Nutrients on Aerobic Biodegradation 56 4.1.3. Potential of Biodegradation under Anoxic Condition 61 4.1.4. Efficiency of the Wastewater Treatment Process after Changing the Operating Condition 63 4.2、 Anaerobic biodegradation of NMP 66 4.2.1. Water quality of Lab-Scale Anaerobic Continuously Stirred Tank Reactor 66 4.2.2. Gas Analysis of Lab-Scale Anaerobic Reactor 74 4.2.3. Pilot parameter and efficiency evaluation analysis 76 4.3、 NMP Adsorption isotherm 80 4.4、 Anaerobic Metabolic Pathway 82 4.5、 Simulation Model 85 4.6、 Comparison with the Biodegradation of NMP 89 CHAPTER 5. Conclusion 90 References 93 Appendix 97

    Åkesson, B. Major metabolic pathway for N-methyl-2-pyrrolidone in humans. Drug Metabolism and Disposition, 25(2), 267-269. (1997).
    APHA. standardmethodsfortheexaminationofwaterandwastewater1000-3000 (1999).
    Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Vavilin, V. The IWA anaerobic digestion model no 1 (ADM1). Water Science and Technology, 45(10), 65-73. (2002).
    Bernhard, A. The nitrogen cycle: Processes. Players, and Human. (2010).
    Burghate, S., & Ingole, N. Biological denitrification-a Review. J Environ Sci Comput Sci Eng Technol, 14, 009-028. (2014).
    Buswell, A., & Mueller, H. Mechanism of methane fermentation. Industrial & Engineering Chemistry, 44(3), 550-552. (1952).
    Cai, S., Cai, T., Liu, S., Yang, Q., He, J., Chen, L., & Hu, J. Biodegradation of N-methylpyrrolidone by Paracoccus sp. NMD-4 and its degradation pathway. International Biodeterioration & Biodegradation, 93, 70-77. (2014).
    Campbell, H. L., & Striebig, B. A. Evaluation of N-methylpyrrolidone and its oxidative products toxicity utilizing the microtox assay. Environmental Science & Technology, 33(11), 1926-1930. (1999).
    Carnerup, M. A., Saillenfait, A. M., & Jönsson, B. A. Concentrations of N-methyl-2-pyrrolidone (NMP) and its metabolites in plasma and urine following oral administration of NMP to rats. Food and Chemical Toxicology, 43(9), 1441-1447. (2005).
    Carnerup, M. A., Spanne, M., & Jönsson, B. A. Levels of N-methyl-2-pyrrolidone (NMP) and its metabolites in plasma and urine from volunteers after experimental exposure to NMP in dry and humid air. Toxicology Letters, 162(2-3), 139-145. (2006).
    Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155(1-2), 1-18. (2009a).
    Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. G. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155(1-2), 1-18. doi:10.1016/j.cej.2009.06.041 (2009b).
    Chen, J., Ying, G.-G., Liu, Y.-S., Wei, X.-D., Liu, S.-S., He, L.-Y., . . . Chen, F.-R. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters. Journal of Environmental Science and Health, Part A, 52(8), 804-818. (2017).
    Chen, T., Ni, C., & Chen, J. Nitrification–denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. Journal of Environmental Science and Health, Part A, 38(10), 2157-2167. (2003).
    Chen, Y., Cheng, J. J., & Creamer, K. S. Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044-4064. (2008).
    Chow, S. T., & Ng, T. L. The biodegradation of N-methyl-2-pyrrolidone in water by sewage bacteria. Water Research, 17(1), 117-118. (1983).
    Colleran, E., Finnegan, S., & Lens, P. Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek, 67(1), 29-46. (1995).
    Colleran, E., Pender, S., Philpott, U., O'flaherty, V., & Leahy, B. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater. Biodegradation, 9(3-4), 233-245. (1998).
    Den, W., Ko, F.-H., & Huang, T.-Y. Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet/hydrogen peroxide and biodegradation. IEEE transactions on semiconductor manufacturing, 15(4), 540-551. (2002).
    Flick, B., Talsness, C. E., Jäckh, R., Buesen, R., & Klug, S. Embryotoxic potential of N-methyl-pyrrolidone (NMP) and three of its metabolites using the rat whole embryo culture system. Toxicology and Applied Pharmacology, 237(2), 154-167. (2009).
    Gander, M., Jefferson, B., & Judd, S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and purification Technology, 18(2), 119-130. (2000).
    Harada, H., Uemura, S., & Momonoi, K. Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Research, 28(2), 355-367. (1994).
    Jouyban, A., Fakhree, M. A. A., & Shayanfar, A. Review of pharmaceutical applications of N-methyl-2-pyrrolidone. Journal of Pharmacy & Pharmaceutical Sciences, 13(4), 524-535. (2010).
    Kato, M. T. The anaerobic treatment of low strength soluble wastewaters: Kato. (1994).
    Kayhanian, M. Performance of a high‐solids anaerobic digestion process under various ammonia concentrations. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 59(4), 349-352. (1994).
    Koito, T., Tekawa, M., & Toyoda, A. A novel treatment technique for DMSO wastewater. IEEE transactions on semiconductor manufacturing, 11(1), 3-8. (1998).
    Koster, I., & Lettinga, G. Anaerobic digestion at extreme ammonia concentrations. Biological Wastes, 25(1), 51-59. (1988).
    Křížek, K., Růžička, J., Julinová, M., Husárová, L., Houser, J., Dvořáčková, M., & Jančová, P. N-methyl-2-pyrrolidone-degrading bacteria from activated sludge. Water Science and Technology, 71(5), 776-782. (2015).
    Lee, J. K., Lee, W. J., Cho, Y.-J., Park, D. H., Lee, Y.-W., & Chung, J. Variation of bacterial community immobilized in polyethylene glycol carrier during mineralization of xenobiotics analyzed by TGGE technique. Korean Journal of Chemical Engineering, 27(6), 1816-1821. (2010).
    Lin, S. H., & Kiang, C. D. Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant. Journal of hazardous materials, 97(1-3), 159-171. (2003).
    Loh, C. H., Wu, B., Ge, L., Pan, C., & Wang, R. High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: A feasibility study. Chemosphere, 194, 534-542. (2018).
    Lu, H., Chandran, K., & Stensel, D. Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64, 237-254. (2014).
    Matějů, V., Čižinská, S., Krejčí, J., & Janoch, T. Biological water denitrification—a review. Enzyme and Microbial Technology, 14(3), 170-183. (1992).
    Oceguera-Cervantes, A., Carrillo-García, A., López, N., Bolaños-Nuñez, S., Cruz-Gómez, M. J., Wacher, C., & Loza-Tavera, H. Characterization of the polyurethanolytic activity of two Alicycliphilus sp. strains able to degrade polyurethane and N-methylpyrrolidone. Appl. Environ. Microbiol., 73(19), 6214-6223. (2007).
    Pehlivanoglu-Mantas, E., & Sedlak, D. L. Wastewater-derived dissolved organic nitrogen: analytical methods, characterization, and effects—a review. Critical Reviews in Environmental Science and Technology, 36(3), 261-285. (2006).
    Putri, D. W. 探討光電產業廢水生物處理程序中 dimethyl sulfoxide 與 dimethyl sulfide 對微生物族群之影響. 成功大學環境工程學系學位論文, 1-145. (2011).
    Quinlan, A. V. Prediction of the optimum pH for ammonia-n oxidation by Nitrosomonas europaea in well-aerated natural and domestic-waste waters. Water Research, 18(5), 561-566. (1984).
    Reisch, M. (2008). Solvent users look to replace NMP. In: AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA.
    Růžička, J., Fusková, J., Křížek, K., Měrková, M., Černotová, A., & Smělík, M. Microbial degradation of N-methyl-2-pyrrolidone in surface water and bacteria responsible for the process. Water Science and Technology, 73(3), 643-647. (2016).
    Shin, C., Lee, E., McCarty, P. L., & Bae, J. Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater. Bioresource Technology, 102(21), 9860-9865. (2011).
    SIA. <2017 SIA-Comments-to-EPA-on-N-Methylpyrrolidone-NMP-March-15 >. (2017).
    Solís-González, C. J., Domínguez-Malfavón, L., Vargas-Suárez, M., Gaytán, I., Cevallos, M. Á., Lozano, L., . . . Loza-Tavera, H. Novel metabolic pathway for N-methylpyrrolidone degradation in Alicycliphilus sp. strain BQ1. Appl. Environ. Microbiol., 84(1), e02136-02117. (2018).
    Stefanie, J. O. E., Visser, A., Pol, L. W. H., & Stams, A. J. Sulfate reduction in methanogenic bioreactors. FEMS Microbiology Reviews, 15(2-3), 119-136. (1994).
    Stein, L. Y., & Klotz, M. G. The nitrogen cycle. Current Biology, 26(3), R94-R98. (2016).
    Wang, C.-T., & Chiu, C.-S. Competitive strategies for Taiwan's semiconductor industry in a new world economy. Technology in Society, 36, 60-73. (2014).
    Wiegel, J. Temperature spans for growth: hypothesis and discussion. FEMS Microbiology Reviews, 6(2-3), 155-169. (1990).
    Zhang, B., Zhang, L., Zhang, S., Shi, H., & Cai, W. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environmental Technology, 26(3), 329-340. (2005).
    Zolfaghari, A., Mortaheb, H. R., & Meshkini, F. Removal of N-methyl-2-pyrrolidone by photocatalytic degradation in a batch reactor. Industrial & Engineering Chemistry Research, 50(16), 9569-9576. (2011).
    丘恬鳳. 含 NMP 半導體廢水在好氧, 缺氧與厭氧條件下之生物可降解性評估之研究. (2018).
    王信陽. 台灣電子設備產業創新十年的發展契機. 機械工業雜誌(435), 9-14. (2019).
    張瑞琪, & 白曛綾. 高科技產業高沸點製程廢氣調查技術研究. (2010).

    下載圖示 校內:2024-07-16公開
    校外:2024-07-16公開
    QR CODE