| 研究生: |
何佳霖 Her, Jia-Lin |
|---|---|
| 論文名稱: |
碳化矽與導電碳包覆之奈米矽片及其於鋰離子電池陽極之應用 Silicon Carbide and Conductive Carbon Coated Silicon Flake for Application to Anode of Lithium Ion Battery |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 鋰離子電池 、矽 、間苯二酚-甲醛樹酯 、碳化矽 、陽極材料 |
| 外文關鍵詞: | Lithium ion battery, Silicon, Resorcinol–formaldehyde (RF) resins, Silicon Carbide, Anode |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技的進步帶給人們便利生活的同時,能源的需求與儲存議題也逐漸受到重視,不能否認,能源是帶動科技進步的重要推手,然而隨著地球的資源日漸短缺,能源不足的問題日趨嚴峻,加上近年來環保意識抬頭更注重於綠色能源,發展儲電系統便是構建分散能源並提昇離峰時段用電效率的最佳方法,對於間歇性電力來源而言,電池或許是理想的儲存媒介,因為電池充電速度快,能立即開啟或關閉,而且容易擴充,而其中鋰離子電池為現今最有效儲存能源的方式之一,與其他電池相比,鋰電池具有電容量大、安全性高、工作電壓適中、低環境汙染、高能量密度、可快速充放電且循環壽命長等優點,被認為是目前最有效率的能源儲存方式。
本研究主要專注於鋰離子電池陽極(負極)材料的開發,其中石墨陽極在應用上具有充放電周期長的優勢,且在長時間充放電時不會有枝晶鋰產生,是市面上最常使用的鋰電池陽極,然而其理論電容只有372〖 mAh g〗^(-1),所以尋找替代的材料是重之重。其中矽是下一代鋰離子電池(LIB)最有希望的陽極材料,因為它具有4200〖 mAh g〗^(-1)的高理論電容值,然而在充放電期間的大體積變化造成粉末碎裂和低固有電導率妨礙了其電化學性能。因此本研究主要在矽材料上加以改善,使用熱化學氣相沉積法(Thermal Chemical Vapor Deposition, Thermal CVD)在奈米矽片上成長碳化矽及沉積導電碳當作緩衝層,再加上塗佈間苯二酚-甲醛樹酯當作最外層的保護層,以上述所說的兩道製程包覆之矽所製成的陽極,在全充全放下80次循環後,還有1099〖 mAh g〗^(-1)的電容量,而未處理的奈米矽片陽極只剩下50〖 mAh g〗^(-1)的電容量,證明此包覆方法可以幫助矽基陽極材料延長其壽命。
A thermal chemical vapor deposition (CVD) method is used to grow silicon carbide and deposit conductive carbon as a buffer layer on surfaces of the silicon flake, and coating resorcinol–formaldehyde (RF) resins is used as the outermost protective layer. By taking advantage of the high strength and toughness of silicon carbide (SiC), a SiC layer is introduced between the inner silicon and outer carbon layers to inhibit the formation of Li2SiF6. The Si-carbon composite as an anode exhibited the reversible capacity of 1099〖 mAh g〗^(-1) at 500〖 mA g〗^(-1) after 80 cycles.
[1] P. o. W. R. A. M. P. Ltd. Global Lithium-Ion Battery Market: by Type (Lithium Nickel Manganese Cobalt, Lithium Iron Phosphate, Lithium Cobalt Oxide, Lithium Titanate Oxide, Lithium Manganese Oxide, and Lithium Nickel Cobalt Aluminum Oxide) Forecast till 2023 [Online]. Available: https://www.marketresearchfuture.com/reports/lithium-ion-battery-market-979.
[2] M. D. Bhatt and C. O'Dwyer, "Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes," Physical Chemistry Chemical Physics, vol. 17, no. 7, pp. 4799-4844, 2015.
[3] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, "A review of advanced and practical lithium battery materials," Journal of Materials Chemistry, vol. 21, no. 27, pp. 9938-9954, 2011.
[4] R. Liu, J. Duay, and S. B. Lee, "Heterogeneous nanostructured electrode materials for electrochemical energy storage," Chemical Communications, vol. 47, no. 5, pp. 1384-1404, 2011.
[5] R. A. Huggins, "Lithium alloy negative electrodes," Journal of Power Sources, vol. 81, pp. 13-19, 1999.
[6] W.-J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 1, pp. 13-24, 2011.
[7] J. W. Kim, J. H. Ryu, K. T. Lee, and S. M. Oh, "Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries," Journal of Power sources, vol. 147, no. 1-2, pp. 227-233, 2005.
[8] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano today, vol. 7, no. 5, pp. 414-429, 2012.
[9] L. Liu, J. Lyu, T. Li, and T. Zhao, "Well-constructed silicon-based materials as high-performance lithium-ion battery anodes," Nanoscale, vol. 8, no. 2, pp. 701-722, 2016.
[10] E. Roduner, "Size matters: why nanomaterials are different," Chemical Society Reviews, vol. 35, no. 7, pp. 583-592, 2006.
[11] A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijk, "Nanostructured materials for advanced energy conversion and storage devices," in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group: World Scientific, 2011, pp. 148-159.
[12] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-dependent fracture of silicon nanoparticles during lithiation," ACS nano, vol. 6, no. 2, pp. 1522-1531, 2012.
[13] H. Kim, M. Seo, M. H. Park, and J. Cho, "A critical size of silicon nano‐anodes for lithium rechargeable batteries," Angewandte Chemie International Edition, vol. 49, no. 12, pp. 2146-2149, 2010.
[14] X. Su et al., "Silicon‐based nanomaterials for lithium‐ion batteries: a review," Advanced Energy Materials, vol. 4, no. 1, p. 1300882, 2014.
[15] C. Li, T. Shi, D. Li, H. Yoshitake, and H. Wang, "Dependence of thermal stability of lithiated Si on particle size," Journal of Power Sources, vol. 335, pp. 38-44, 2016.
[16] Y. Yao et al., "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life," Nano letters, vol. 11, no. 7, pp. 2949-2954, 2011.
[17] C. K. Chan, R. N. Patel, M. J. O’connell, B. A. Korgel, and Y. Cui, "Solution-grown silicon nanowires for lithium-ion battery anodes," ACS nano, vol. 4, no. 3, pp. 1443-1450, 2010.
[18] B. Laik, L. Eude, J.-P. Pereira-Ramos, C. S. Cojocaru, D. Pribat, and E. Rouvière, "Silicon nanowires as negative electrode for lithium-ion microbatteries," Electrochimica Acta, vol. 53, no. 17, pp. 5528-5532, 2008.
[19] H. T. Nguyen et al., "Highly interconnected Si nanowires for improved stability Li‐ion battery anodes," Advanced Energy Materials, vol. 1, no. 6, pp. 1154-1161, 2011.
[20] C. K. Chan et al., "High-performance lithium battery anodes using silicon nanowires," Nature nanotechnology, vol. 3, no. 1, pp. 31-35, 2008.
[21] Z. Favors et al., "Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO 2 nanofibers," Scientific reports, vol. 5, p. 8246, 2015.
[22] Z. Du, S. Zhang, Y. Liu, J. Zhao, R. Lin, and T. Jiang, "Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage," Journal of Materials Chemistry, vol. 22, no. 23, pp. 11636-11641, 2012.
[23] D. J. Lee et al., "Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries," ACS applied materials & interfaces, vol. 5, no. 22, pp. 12005-12010, 2013.
[24] H. Jung, M. Park, S. H. Han, H. Lim, and S.-K. Joo, "Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries," Solid State Communications, vol. 125, no. 7-8, pp. 387-390, 2003.
[25] J. R. Szczech and S. Jin, "Nanostructured silicon for high capacity lithium battery anodes," Energy & Environmental Science, vol. 4, no. 1, pp. 56-72, 2011.
[26] S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, "A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life," Journal of Power Sources, vol. 136, no. 2, pp. 303-306, 2004.
[27] W. He, H. Tian, F. Xin, and W. Han, "Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries," Journal of Materials Chemistry A, vol. 3, no. 35, pp. 17956-17962, 2015.
[28] H. Park et al., "Control of interfacial layers for high-performance porous Si lithium-ion battery anode," ACS applied materials & interfaces, vol. 6, no. 18, pp. 16360-16367, 2014.
[29] J.-H. Lee, W.-J. Kim, J.-Y. Kim, S.-H. Lim, and S.-M. Lee, "Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries," Journal of Power Sources, vol. 176, no. 1, pp. 353-358, 2008.
[30] J. K. Lee, K. B. Smith, C. M. Hayner, and H. H. Kung, "Silicon nanoparticles–graphene paper composites for Li ion battery anodes," Chemical communications, vol. 46, no. 12, pp. 2025-2027, 2010.
[31] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the american chemical society, vol. 80, no. 6, pp. 1339-1339, 1958.
[32] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, "Carbon nanotubes for lithium ion batteries," Energy & Environmental Science, vol. 2, no. 6, pp. 638-654, 2009.
[33] B. J. Landi, C. M. Evans, J. J. Worman, S. L. Castro, S. G. Bailey, and R. P. Raffaelle, "Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes," Materials Letters, vol. 60, no. 29-30, pp. 3502-3506, 2006.
[34] J. Shu, H. Li, R. Yang, Y. Shi, and X. Huang, "Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries," Electrochemistry Communications, vol. 8, no. 1, pp. 51-54, 2006.
[35] W. Wang and P. N. Kumta, "Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes," ACS nano, vol. 4, no. 4, pp. 2233-2241, 2010.
[36] N. Li et al., "Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin," Chemical Communications, vol. 49, no. 45, pp. 5135-5137, 2013.
[37] Z. Lu et al., "Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes," ACS nano, vol. 9, no. 3, pp. 2540-2547, 2015.
[38] T. S. D. Kumari, D. Jeyakumar, and T. P. Kumar, "Nano silicon carbide: a new lithium-insertion anode material on the horizon," RSC advances, vol. 3, no. 35, pp. 15028-15034, 2013.
[39] A. V. Singh, S. Chandra, S. Kumar, and G. Bose, "Mechanical and structural properties of RF magnetron sputter-deposited silicon carbide films for MEMS applications," Journal of Micromechanics and Microengineering, vol. 22, no. 2, p. 025010, 2012.
[40] D. T. Ngo, H. T. Le, X.-M. Pham, C.-N. Park, and C.-J. Park, "Facile synthesis of Si@ SiC composite as an anode material for lithium-ion batteries," ACS applied materials & interfaces, vol. 9, no. 38, pp. 32790-32800, 2017.
[41] Y. Komura, A. Tabata, T. Narita, and A. Kondo, "Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system," Thin Solid Films, vol. 516, no. 5, pp. 633-636, 2008.
[42] M. Dragomir, M. Valant, M. Fanetti, and Y. Mozharivskyj, "A facile chemical method for the synthesis of 3C–SiC nanoflakes," RSC advances, vol. 6, no. 26, pp. 21795-21801, 2016.