| 研究生: |
白喻丰 Pai, Yu-Feng |
|---|---|
| 論文名稱: |
雙流體聲泳分類晶片內子聚焦現象探討 Study of Particle Focusing in Twin-Fluid Micro Acoustophoretic Sorters |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 聲輻射力 、雙流體 、粒子聚焦 |
| 外文關鍵詞: | acoustic radiation force, twin fluid, particle focusing |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的研究主要集中在一個單一流體中,利用聲輻射力對粒子產生聚集效果,但在之後會需要一個後續程序,將流體與粒子做一分離。本研究利用了一個雙向流體微流系統,使粒子脫離原來的流體並移動到另一種流體。在雙流體微流系統中,兩種不同的互溶流體分別經由兩個微流道入口注入,然後利用聲波駐波方法使得粒子聚集於節線處,最後再經由兩個微流道出口注出,由於流體間聲學性質的差異,會使得聲波的壓力節線不在管道的正中間處。
在聲輻射力的作用下 ,當常數A為正值時,可以使得粒子從原來的流體,重新懸浮到其他流體。本研究接著分析兩種不同的互溶流體,當其在微流道中所佔比例不同時,在聲輻射的作用下,其壓力節線會產生變化,並對此結果做一完整的探討。
Previous studies on particle focusing using acoustic radiation force have mainly focused on separation within a single fluid that needs a subsequent procedure to re-dilute separated particles into other media for cellular analysis. In this study, a twin fluid micro-flow system is proposed for separating particles from its original solvent and rediluting them into another solvent simultaneously. In this micro-flow system, two different miscible solvents flow parallel to each other through a 2-inlet-2-outlet micro-channel, where an acoustic standing wave is set up. Due to the differences in acoustic properties of these solvents, the pressure node of the acoustic wave is shifted from the middle line of the channel.
Under the action of the acoustic radiation force, particles with positive A -factors are extracted from their original solvent and re-suspended into the other solvent, wherein the pressure node resides.
[1]L. V. King, "On the Acoustic Radiation Pressure on Spheres," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 147, pp. 212-240, 1934.
[2]K. Yasuda and T. Kamakura, "Acoustic radiation force on micrometer-size particles," Applied Physics Letters, vol. 71, p. 1771, 1997.
[3]A. Nilsson, F. Petersson, H. Jonsson, and T. Laurell, "Acoustic control of suspended particles in micro fluidic chips," Lab Chip, vol. 4, pp. 131-5, Apr 2004.
[4]F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, "Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels," Analyst, vol. 129, pp. 938-43, Oct 2004.
[5]F. Petersson, L. A¡ berg, A.-M. Swärd-Nilsson, and T. Laurell, "Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation," Analytical Chemistry, vol. 79, pp. 5117-5123, Jul 2007.
[6]S. M. Hagsater, T. G. Jensen, H. Bruus, and J. P. Kutter, "Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations," Lab Chip, vol. 7, pp. 1336-44, Oct 2007.
[7]Y. Liu and K.-M. Lim, "Particle Transport across Bi-Fluid Interface Using Acoustic Radiation Force," Modern Physics Letters B, vol. 24, p. 1397, 2010.
[8]H. Bruus, "Microfluidics and ultrasound acoustophoresis," 2010.