| 研究生: |
葉智仁 Yeh, Chih-Jen |
|---|---|
| 論文名稱: |
奈米玻璃晶粒尺寸效應對金屬玻璃-奈米玻璃複合材料的影響:介觀尺度可變特徵應變模型研究 Effect of Nanoglass Grain Size on Metallic Glass-Nanoglass Composites: A Mesoscale Variable Characteristic Strain Model Study |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
黃仲偉
Huang, Chang-Wei 羅友杰 Lo, Yu-Chieh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 金屬玻璃 、奈米玻璃 、複合材料 、介觀尺度模擬 、尺寸效應 |
| 外文關鍵詞: | Nanoglass, Mesoscale modeling, Variable characteristic strain, Size effects, Composites |
| 相關次數: | 點閱:50 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬玻璃時常會因為剪切帶的出現使其遭遇難以回復的破壞。不同於金屬玻璃,在諸多原子模擬中已顯示奈米玻璃因為有晶界的存在,使其對於剪切變形的抵抗遠高於金屬玻璃。本研究藉由一動力蒙地卡羅介觀尺度模型,並引入可變動的特徵應變以探討奈米玻璃在晶粒尺寸效應的力學行為。這個模型除了能捕捉到剪切帶的形成過程,以及當奈米玻璃的晶粒尺寸從38 nm至6 nm,此模型的結果顯示出奈米玻璃變形呈現由非均質變形到均質變形的過渡轉變。由於晶界相對晶粒較軟,早期的塑性變形會優先出現在晶界;而隨著晶粒尺寸變小,晶界的體積占比提升,使早期出現在晶界的變形抑制了剪切帶的成長。除此之外,本研究結果顯示出現均質變形的臨界晶粒尺寸與先前的原子模擬結果一致,這顯示了奈米玻璃的模型設計在抵抗剪切變形是具有潛力的。而藉由此介觀尺度模型能夠在與實驗相近的時間與空間尺度上研究奈米玻璃變形。
除了奈米玻璃的晶粒尺寸效應,本研究將可變動的特徵應變延伸至金屬玻璃-奈米玻璃複合材料,並考慮晶粒尺寸效應對複合材料的影響。模擬結果顯示出複合材料的軟化行為會隨著奈米玻璃的體積占比減少而增強。此外,晶粒尺寸效應會隨著奈米玻璃的體積占比增加而變得更明顯。本研究針對奈米玻璃在複合材料中的單層與多層進行分析,除了奈米玻璃的體積占比會直接影響軟化行為之外,當金屬玻璃的空間不足以使剪切帶生長時,亦可以抑制軟化行為的發生。
另一方面,本研究探討了複合材料中以奈米玻璃作為第二相的角度效應,在相同的奈米玻璃體積占比下,探討奈米玻璃夾層與拉伸方向夾45°至65°的力學行為。研究結果展示當夾角為45°時,試體雖然擁有良好的塑性承載力,然而因為應力集中,因此有著最低的材料強度。隨著夾角遠離45°時,奈米玻璃對早期塑性變形逐漸失去控制力;這也表示應力集中的狀況降低,材料強度也隨夾角變大而升高。此外,當夾角不等於45°時,剪切變形會受到最大剪應力與奈米玻璃夾層的夾角競爭,使剪切帶傳播方向出現偏移。這些偏移發生的位置都位於金屬玻璃與奈米玻璃的邊界附近,而當奈米玻璃夾層的夾角為55°時會發生最嚴重的剪切帶偏移,模擬結果也表示夾角為55°的案例比45°的案例擁有更好的強度與塑性承載力。奈米玻璃夾層的夾角不只會影響材料強度,也會影響晶粒尺寸效應的強度,當夾角大於55°,晶粒尺寸效應會因為奈米玻璃夾層對塑性變形的控制力降低也呈現降低的趨勢。對於金屬玻璃-奈米玻璃複合材料的設計概念,這些角度效應提供了更廣泛的策略,藉由整合晶粒尺寸與幾何配置可以促進金屬玻璃-奈米玻璃複合材料之性能提升。
Shear bands caused by shear localization in metallic glasses (MGs) impose limitations on the mechanical performance. Nanoglass (NG), which consists of heterogeneous glassy structures created by introducing interfaces into MGs at the nanoscale, has emerged as a viable strategy to compete against significant shear localization, as revealed by numerous atomistic simulations. The grain size effect in NGs is studied by a novel mesoscale kinetic Monte Carlo (kMC) model introducing a variable characteristic strain (VCS). This model captures the complex evolution of shear bands in the process of deformation, illustrating a notable transition from inhomogeneous to homogeneous deformation as the grain size of NG reduces to around 10 nm. VCS can also capture the softening behavior of MG-NG composites with different volume fractions of NG. The results indicate that the grain size effect is enhanced as the volume fraction of NG increases. The inclination angle of the NG layers, which range from 45°to 65°, is studied in MG-NG composites with the same volume fraction of NG. The most significant offset shear band, which is considered to enhance the plasticity, is observed when the inclination angles of the NG layers are up to 55°.
[1] W. Klement, R. H. Willens, and P. O. L. Duwez, "Non-crystalline Structure in Solidified Gold–Silicon Alloys," Nature, vol. 187, no. 4740, pp. 869-870, 1960/09/01 1960, doi: 10.1038/187869b0.
[2] M. D. Demetriou, M. E. Launey, G. Garrett, J. P. Schramm, D. C. Hofmann, W. L. Johnson, and R. O. Ritchie, "A damage-tolerant glass," Nature Materials, vol. 10, no. 2, pp. 123-128, 2011/02/01 2011, doi: 10.1038/nmat2930.
[3] C. Schuh, T. Hufnagel, and U. Ramamurty, "Mechanical behavior of amorphous alloys," Acta Materialia, vol. 55, no. 12, pp. 4067-4109, 2007, doi: 10.1016/j.actamat.2007.01.052.
[4] A. L. Greer, Y. Q. Cheng, and E. Ma, "Shear bands in metallic glasses," Materials Science and Engineering: R: Reports, vol. 74, no. 4, pp. 71-132, 2013, doi: 10.1016/j.mser.2013.04.001.
[5] J. Qiao, H. Jia, and P. K. Liaw, "Metallic glass matrix composites," Materials Science and Engineering: R: Reports, vol. 100, pp. 1-69, 2016, doi: 10.1016/j.mser.2015.12.001.
[6] K. Yao and C. Zhang, "Fe-based bulk metallic glass with high plasticity," Applied Physics Letters, vol. 90, no. 6, p. 061901, 2007.
[7] H. Gleiter, "Nanoglasses: a new kind of noncrystalline materials," Beilstein Journal of Nanotechnology, vol. 4, pp. 517-33, Sep 13 2013, doi: 10.3762/bjnano.4.61.
[8] H. Gleiter, "Nanoglasses: A New Kind of Noncrystalline Material and the Way to an Age of New Technologies?," Small, vol. 12, no. 16, pp. 2225-2233, 2016, doi: 10.1002/smll.201500899.
[9] H. Gleiter, "Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?," Acta Materialia, vol. 56, no. 19, pp. 5875-5893, 2008, doi: 10.1016/j.actamat.2008.08.028.
[10] J. Jing, A. Krämer, R. Birringer, H. Gleiter, and U. Gonser, "Modified atomic structure in a Pd-Fe-Si nanoglass," Journal of Non-Crystalline Solids, vol. 113, no. 2-3, pp. 167-170, 1989, doi: 10.1016/0022-3093(89)90007-0.
[11] H. Voigt, A. Rigoni, E. Boltynjuk, M. R. Chellali, B. Tyler, H. Rösner, S. Divinski, H. Hahn, and G. Wilde, "Evidence for Glass–glass Interfaces in a Columnar Cu–Zr Nanoglass," Advanced Functional Materials, 2023, doi: 10.1002/adfm.202302386.
[12] J. X. Fang, U. Vainio, W. Puff, R. Wurschum, X. L. Wang, D. Wang, M. Ghafari, F. Jiang, J. Sun, H. Hahn, and H. Gleiter, "Atomic structure and structural stability of Sc75Fe25 nanoglasses," Nano Letters, vol. 12, no. 1, pp. 458-63, Jan 11 2012, doi: 10.1021/nl2038216.
[13] Y. Ritter, D. Şopu, H. Gleiter, and K. Albe, "Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations," Acta Materialia, vol. 59, no. 17, pp. 6588-6593, 2011, doi: 10.1016/j.actamat.2011.07.013.
[14] D. Şopu, K. Albe, Y. Ritter, and H. Gleiter, "From nanoglasses to bulk massive glasses," Applied Physics Letters, vol. 94, no. 19, 2009, doi: 10.1063/1.3130209.
[15] X. L. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, and J. X. Fang, "Plasticity of a scandium-based nanoglass," Scripta Materialia, vol. 98, pp. 40-43, 2015, doi: 10.1016/j.scriptamat.2014.11.010.
[16] D. Şopu, Y. Ritter, H. Gleiter, and K. Albe, "Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations," Physical Review B, vol. 83, no. 10, 2011, doi: 10.1103/PhysRevB.83.100202.
[17] T. Li, K. Ma, and G. Zheng, "The effects of glass–glass interfaces on thermodynamic and mechanical properties of Co–Fe–P metallic nano-glasses," Journal of Materials Research, vol. 36, no. 24, pp. 4951-4962, 2021, doi: 10.1557/s43578-021-00429-6.
[18] D. Ouyang, L. Zhao, N. Li, J. Pan, L. Liu, and K. C. Chan, "Atomistic investigation of modulating structural heterogeneities to achieve strength-ductility synergy in metallic glasses," Computational Materials Science, vol. 217, p. 111918, 2023/01/25/ 2023, doi: https://doi.org/10.1016/j.commatsci.2022.111918.
[19] S. H. Nandam, R. Schwaiger, A. Kobler, C. Kübel, C. Wang, Y. Ivanisenko, and H. Hahn, "Controlling shear band instability by nanoscale heterogeneities in metallic nanoglasses," Journal of Materials Research, vol. 36, no. 14, pp. 2903-2914, 2021, doi: 10.1557/s43578-021-00285-4.
[20] Y. Wang, H. Gleiter, and M. Li, "From patterning heterogeneity to nanoglass: A new approach to harden and toughen metallic glasses," MRS Bulletin, vol. 48, no. 1, pp. 56-67, 2023/01/01 2023, doi: 10.1557/s43577-022-00347-w.
[21] S. H. Nandam, O. Adjaoud, R. Schwaiger, Y. Ivanisenko, M. R. Chellali, D. Wang, K. Albe, and H. Hahn, "Influence of topological structure and chemical segregation on the thermal and mechanical properties of Pd–Si nanoglasses," Acta Materialia, vol. 193, pp. 252-260, 2020, doi: 10.1016/j.actamat.2020.03.021.
[22] S. H. Nandam, Y. Ivanisenko, R. Schwaiger, Z. Śniadecki, X. Mu, D. Wang, R. Chellali, T. Boll, A. Kilmametov, T. Bergfeldt, H. Gleiter, and H. Hahn, "Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties," Acta Materialia, vol. 136, pp. 181-189, 2017, doi: 10.1016/j.actamat.2017.07.001.
[23] A. Sharma, S. S. Hirmukhe, S. H. Nandam, H. Hahn, I. Singh, R. L. Narayan, and K. E. Prasad, "Strain rate sensitivity of a Cu60Zr40 metallic and nanoglass," Journal of Alloys and Compounds, vol. 921, 2022, doi: 10.1016/j.jallcom.2022.165991.
[24] A. Sharma, S. H. Nandam, H. Hahn, and K. E. Prasad, "On the differences in shear band characteristics between a binary Pd-Si metallic and nanoglass," Scripta Materialia, vol. 191, pp. 17-22, 2021, doi: 10.1016/j.scriptamat.2020.09.009.
[25] O. Adjaoud and K. Albe, "Mechanical Properties of Glassy Nanopillars: A Comparative, Computational Study of Size Effects in Nanoglasses and Homogeneous Bulk Glasses," Frontiers in Materials, vol. 7, 2020, doi: 10.3389/fmats.2020.544660.
[26] S. Adibi, P. S. Branicio, Y.-W. Zhang, and S. P. Joshi, "Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses," Journal of Applied Physics, vol. 116, no. 4, 2014, doi: 10.1063/1.4891450.
[27] S. Adibi, Z.-D. Sha, P. S. Branicio, S. P. Joshi, Z.-S. Liu, and Y.-W. Zhang, "A transition from localized shear banding to homogeneous superplastic flow in nanoglass," Applied Physics Letters, vol. 103, no. 21, 2013, doi: 10.1063/1.4833018.
[28] Z. D. Sha, P. S. Branicio, Q. X. Pei, Z. S. Liu, H. P. Lee, T. E. Tay, and T. J. Wang, "Strong and superplastic nanoglass," Nanoscale, vol. 7, no. 41, pp. 17404-9, Nov 7 2015, doi: 10.1039/c5nr04740d.
[29] D. Sopu and K. Albe, "Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu-Zr nanoglasses," Beilstein Journal of Nanotechnology, vol. 6, pp. 537-545, 2015, doi: 10.3762/bjnano.6.56.
[30] S. Adibi, P. S. Branicio, and S. P. Joshi, "Suppression of Shear Banding and Transition to Necking and Homogeneous Flow in Nanoglass Nanopillars," Scientific Reports, vol. 5, p. 15611, Oct 27 2015, doi: 10.1038/srep15611.
[31] K. Albe, Y. Ritter, and D. Şopu, "Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations," Mechanics of Materials, vol. 67, pp. 94-103, 2013.
[32] S. Yuan and P. S. Branicio, "Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses," International Journal of Plasticity, vol. 134, 2020, doi: 10.1016/j.ijplas.2020.102845.
[33] Y. Chen, J. Ding, and Z.-D. Sha, "Grain Size and Heterophase Effects on Mechanical Properties of Mg-Cu Nanoglasses," Frontiers in Materials, vol. 9, 2022, doi: 10.3389/fmats.2022.908952.
[34] B. Cheng and J. R. Trelewicz, "Interfacial plasticity governs strain delocalization in metallic nanoglasses," Journal of Materials Research, vol. 34, no. 13, pp. 2325-2336, 2019, doi: 10.1557/jmr.2019.101.
[35] S. D. Feng, L. Li, Y. D. Liu, L. M. Wang, and R. P. Liu, "Heterogeneous microstructure of Zr46Cu46Al8 nanoglasses studied by quantifying glass-glass interfaces," Journal of Non-Crystalline Solids, vol. 546, 2020, doi: 10.1016/j.jnoncrysol.2020.120265.
[36] Y. Zhao, X. Peng, C. Huang, B. Yang, N. Hu, and M. Wang, "Super Ductility of Nanoglass Aluminium Nitride," Nanomaterials, vol. 9, no. 11, p. 1535, 2019. [Online]. Available: https://www.mdpi.com/2079-4991/9/11/1535.
[37] S. Yuan and P. S. Branicio, "Atomistic simulations of nanoindentation on nanoglasses: Effects of grain size and gradient microstructure on the mechanical properties," Intermetallics, vol. 153, 2023, doi: 10.1016/j.intermet.2022.107782.
[38] Y. Chen, M. Jiang, and L. Dai, "How does the initial free volume distribution affect shear band formation in metallic glass?," Science China Physics, Mechanics and Astronomy, vol. 54, no. 8, pp. 1488-1494, 2011, doi: 10.1007/s11433-011-4376-z.
[39] Y. Wang, M. Li, and J. Xu, "Toughen and harden metallic glass through designing statistical heterogeneity," Scripta Materialia, vol. 113, pp. 10-13, 2016, doi: 10.1016/j.scriptamat.2015.09.038.
[40] I. Singh, R. Narasimhan, and Y. W. Zhang, "Ductility enhancement in nanoglass: role of interaction stress between flow defects," Philosophical Magazine Letters, vol. 94, no. 11, pp. 678-687, 2014, doi: 10.1080/09500839.2014.961584.
[41] K. Kosiba, D. Şopu, S. Scudino, L. Zhang, J. Bednarcik, and S. Pauly, "Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding," International Journal of Plasticity, vol. 119, pp. 156-170, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.ijplas.2019.03.007.
[42] S. Scudino, J. J. Bian, H. Shakur Shahabi, D. Şopu, J. Sort, J. Eckert, and G. Liu, "Ductile bulk metallic glass by controlling structural heterogeneities," Scientific Reports, Article vol. 8, no. 1, 2018, Art no. 9174, doi: 10.1038/s41598-018-27285-5.
[43] S. Park, J. H. Fonseca, K. P. Marimuthu, C. Jeong, S. Lee, and H. Lee, "Determination of material properties of bulk metallic glass using nanoindentation and artificial neural network," Intermetallics, vol. 144, 2022, doi: 10.1016/j.intermet.2022.107492.
[44] H. Zhang, Z. Wang, H. J. Yang, X. H. Shi, P. K. Liaw, and J. W. Qiao, "A flow model in bulk metallic glasses," Scripta Materialia, vol. 222, 2023, doi: 10.1016/j.scriptamat.2022.115047.
[45] J. X. Zhao, Y. Jiang, L. Y. Geng, and J. M. Gong, "On the effect of hydrostatic stress on plastic deformation in metallic glasses," Journal of Non-Crystalline Solids, vol. 521, 2019, doi: 10.1016/j.jnoncrysol.2019.119485.
[46] A. S. Argon, "Plastic deformation in metallic glasses," Acta Metallurgica, vol. 27, no. 1, pp. 47-58, 1979, doi: 10.1016/0001-6160(79)90055-5.
[47] J. D. Eshelby, "The determination of the elastic field of an ellipsoidal inclusion, and related problems," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 241, no. 1226, pp. 376-396, 1957, doi: 10.1098/rspa.1957.0133.
[48] P. Zhao, J. Li, and Y. Wang, "Heterogeneously randomized STZ model of metallic glasses: Softening and extreme value statistics during deformation," International Journal of Plasticity, vol. 40, pp. 1-22, 2013, doi: 10.1016/j.ijplas.2012.06.007.
[49] E. R. Homer and C. A. Schuh, "Mesoscale modeling of amorphous metals by shear transformation zone dynamics," Acta Materialia, vol. 57, no. 9, pp. 2823-2833, 2009, doi: 10.1016/j.actamat.2009.02.035.
[50] L. Li, E. R. Homer, and C. A. Schuh, "Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable," Acta Materialia, vol. 61, no. 9, pp. 3347-3359, 2013, doi: 10.1016/j.actamat.2013.02.024.
[51] V. V. Bulatov and A. S. Argon, "A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization," Modelling and Simulation in Materials Science and Engineering, vol. 2, no. 2, pp. 167-184, 1994, doi: 10.1088/0965-0393/2/2/001.
[52] S. Im, Y. Wang, P. Zhao, G. H. Yoo, Z. Chen, G. Calderon, M. Abbasi Gharacheh, M. Zhu, O. Licata, B. Mazumder, D. A. Muller, E. S. Park, Y. Wang, and J. Hwang, "Medium-range ordering, structural heterogeneity, and their influence on properties of Zr-Cu-Co-Al metallic glasses," Physical Review Materials, vol. 5, no. 11, 2021, doi: 10.1103/PhysRevMaterials.5.115604.
[53] P. Zhao, J. Li, J. Hwang, and Y. Wang, "Influence of nanoscale structural heterogeneity on shear banding in metallic glasses," Acta Materialia, vol. 134, pp. 104-115, 2017, doi: 10.1016/j.actamat.2017.05.057.
[54] A. S. Argon and L. T. Shi, "Development of visco-plastic deformation in metallic glasses," Acta Metallurgica, vol. 31, no. 4, pp. 499-507, 1983, doi: 10.1016/0001-6160(83)90038-x.
[55] M. F. Ashby, "A first report on deformation-mechanism maps," Acta Metallurgica, vol. 20, no. 7, pp. 887-897, 1972/07/01/ 1972, doi: https://doi.org/10.1016/0001-6160(72)90082-X.
[56] F. Spaepen, "A microscopic mechanism for steady state inhomogeneous flow in metallic glasses," Acta Metallurgica, vol. 25, no. 4, pp. 407-415, 1977, doi: 10.1016/0001-6160(77)90232-2.
[57] J. Lu, G. Ravichandran, and W. L. Johnson, "Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures," Acta Materialia, vol. 51, no. 12, pp. 3429-3443, 2003/07/16/ 2003, doi: https://doi.org/10.1016/S1359-6454(03)00164-2.
[58] F. Spaepen, "Homogeneous flow of metallic glasses: A free volume perspective," Scripta Materialia, vol. 54, no. 3, pp. 363-367, 2006, doi: 10.1016/j.scriptamat.2005.09.046.
[59] D. Turnbull and M. H. Cohen, "On the Free‐Volume Model of the Liquid‐Glass Transition," The Journal of Chemical Physics, vol. 52, no. 6, pp. 3038-3041, 2003, doi: 10.1063/1.1673434.
[60] S. V. Ketov, H. K. Nguyen, A. S. Trifonov, K. Nakajima, and D. V. Louzguine-Luzgin, "Huge reduction of Young’s modulus near a shear band in metallic glass," Journal of Alloys and Compounds, vol. 687, pp. 221-226, 2016, doi: 10.1016/j.jallcom.2016.06.116.
[61] G. Abrosimova, A. Aronin, D. Fokin, N. Orlova, and E. Postnova, "The decrease of Young's modulus in shear bands of amorphous Al87Ni8La5 alloy after deformation," Materials Letters, vol. 252, pp. 114-116, 2019, doi: 10.1016/j.matlet.2019.05.099.
[62] D. A. Lucca, A. Zare, M. J. Klopfstein, L. Shao, and G. Q. Xie, "Investigation of the mechanical behavior of ion irradiated Ni-free Ti-based metallic glass by nanoindentation," CIRP Annals, vol. 63, no. 1, pp. 533-536, 2014, doi: 10.1016/j.cirp.2014.03.045.
[63] V. Nekouie, S. Doak, A. Roy, U. Kühn, and V. V. Silberschmidt, "Experimental studies of shear bands in Zr-Cu metallic glass," Journal of Non-Crystalline Solids, vol. 484, pp. 40-48, 2018, doi: 10.1016/j.jnoncrysol.2018.01.009.
[64] W. H. Jiang, F. X. Liu, Y. D. Wang, H. F. Zhang, H. Choo, and P. K. Liaw, "Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses," Materials Science and Engineering: A, vol. 430, no. 1-2, pp. 350-354, 2006, doi: 10.1016/j.msea.2006.05.042.
[65] M. Song, Y. Y. Sun, Y. H. He, and S. F. Guo, "Structure related hardness and elastic modulus of bulk metallic glass," Journal of Applied Physics, vol. 111, no. 5, 2012, doi: 10.1063/1.3692568.
[66] H. Rösner, M. Peterlechner, C. Kübel, V. Schmidt, and G. Wilde, "Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy," Ultramicroscopy, vol. 142, pp. 1-9, 2014/07/01/ 2014, doi: https://doi.org/10.1016/j.ultramic.2014.03.006.
[67] V. Schmidt, H. Rösner, M. Peterlechner, G. Wilde, and P. M. Voyles, "Quantitative Measurement of Density in a Shear Band of Metallic Glass Monitored Along its Propagation Direction," Physical Review Letters, vol. 115, no. 3, 2015, doi: 10.1103/PhysRevLett.115.035501.
[68] M. Stolpe, J. J. Kruzic, and R. Busch, "Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass," Acta Materialia, vol. 64, pp. 231-240, 2014/02/01/ 2014, doi: https://doi.org/10.1016/j.actamat.2013.10.035.
[69] W. J. Wright, T. C. Hufnagel, and W. D. Nix, "Free volume coalescence and void formation in shear bands in metallic glass," Journal of Applied Physics, vol. 93, no. 3, pp. 1432-1437, 2003, doi: 10.1063/1.1531212.
[70] Q. Wei, D. Jia, K. Ramesh, and E. Ma, "Evolution and microstructure of shear bands in nanostructured Fe," Applied Physics Letters, vol. 81, no. 7, pp. 1240-1242, 2002.
[71] J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P. K. Liaw, J. T. Uhl, and K. A. Dahmen, "Tuned critical avalanche scaling in bulk metallic glasses," Scientific Reports, vol. 4, p. 4382, Mar 17 2014, doi: 10.1038/srep04382.
[72] Y. Zhang and A. Greer, "Thickness of shear bands in metallic glasses," Applied Physics Letters, vol. 89, no. 7, 2006.
[73] Y. Shao, K. Yao, M. Li, and X. Liu, "Two-zone heterogeneous structure within shear bands of a bulk metallic glass," Applied Physics Letters, vol. 103, no. 17, 2013.
[74] F. F. Wu, Z. F. Zhang, and S. X. Mao, "Compressive properties of bulk metallic glass with small aspect ratio," Journal of Materials Research, vol. 22, no. 2, pp. 501-507, 2007/02/01 2007, doi: 10.1557/jmr.2007.0064.
[75] W. H. Jiang, G. J. Fan, H. Choo, and P. K. Liaw, "Ductility of a Zr-based bulk-metallic glass with different specimen's geometries," Materials Letters, vol. 60, no. 29-30, pp. 3537-3540, 2006, doi: 10.1016/j.matlet.2006.03.047.
[76] W. Ma, Y. Xu, B. Shi, and J. Li, "Effect of Aspect Ratio on the Evolution of Shear Bands in Zr61.7Al8Ni13Cu17Sn0.3 Bulk Metallic Glass," Journal of Materials Science & Technology, vol. 33, no. 1, pp. 99-104, 2017, doi: 10.1016/j.jmst.2015.12.020.
[77] F. F. Wu, S. S. Jiang, R. D. Zhao, Q. Zhou, G. A. Zhang, and X. F. Wu, "Size-dependent plastic stability of Zr-based metallic glass," Materials Science and Engineering: A, vol. 646, pp. 272-278, 2015, doi: 10.1016/j.msea.2015.08.062.
[78] C. A. Volkert, A. Donohue, and F. Spaepen, "Effect of sample size on deformation in amorphous metals," Journal of Applied Physics, vol. 103, no. 8, 2008, doi: 10.1063/1.2884584.
[79] X. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, and J. Fang, "Sample size effects on strength and deformation mechanism of Sc75Fe25 nanoglass and metallic glass," Scripta Materialia, vol. 116, pp. 95-99, 2016, doi: 10.1016/j.scriptamat.2016.01.036.
[80] J. R. Greer and J. T. M. De Hosson, "Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect," Progress in Materials Science, vol. 56, no. 6, pp. 654-724, 2011, doi: 10.1016/j.pmatsci.2011.01.005.
[81] H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang, M. L. Sui, and E. Ma, "Tensile ductility and necking of metallic glass," Nature Materials, vol. 6, no. 10, pp. 735-739, 2007, doi: 10.1038/nmat1984.
[82] R. T. Qu, S. G. Wang, X. D. Wang, S. J. Wu, and Z. F. Zhang, "Shear band fracture in metallic glass: Sample size effect," Materials Science and Engineering: A, vol. 739, pp. 377-382, 2019, doi: 10.1016/j.msea.2018.10.078.
[83] J. Li, F. Spaepen, and T. C. Hufnagel, "Nanometre-scale defects in shear bands in a metallic glass," Philosophical Magazine A, vol. 82, no. 13, pp. 2623-2630, 2002/09/01 2002, doi: 10.1080/01418610208240056.
[84] Q. Yang, C. Q. Pei, H. B. Yu, and T. Feng, "Metallic Nanoglasses with Promoted beta-Relaxation and Tensile Plasticity," Nano Letters, vol. 21, no. 14, pp. 6051-6056, Jul 28 2021, doi: 10.1021/acs.nanolett.1c01283.
[85] O. Adjaoud and K. Albe, "Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses," Acta Materialia, vol. 168, pp. 393-400, 2019, doi: 10.1016/j.actamat.2019.02.033.
[86] M. M. Wang, M. T. Kiani, A. Parakh, Y. Jiang, and X. Wendy Gu, "Effect of grain size on iron-boride nanoglasses," Journal of Materials Science & Technology, vol. 141, pp. 116-123, 2023, doi: 10.1016/j.jmst.2022.09.025.
[87] J. L. Ma, H. Y. Song, M. R. An, W. W. Li, and R. Q. Han, "A strategy for improving mechanical properties of metallic glass by tailoring interface structure," Journal of Non-Crystalline Solids, vol. 553, p. 120464, 2021/02/01/ 2021, doi: https://doi.org/10.1016/j.jnoncrysol.2020.120464.
[88] Z. Sha, Y. Teng, L. H. Poh, T. Wang, and H. Gao, "Shear Band Control for Improved Strength-Ductility Synergy in Metallic Glasses," Applied Mechanics Reviews, vol. 74, no. 5, 2022, doi: 10.1115/1.4056010.
[89] B. Sarac and J. Schroers, "Designing tensile ductility in metallic glasses," Nature Communications, vol. 4, p. 2158, 2013, doi: 10.1038/ncomms3158.
[90] Q. Li, R. Qu, and Z. Zhang, "Shear banding and fracture behaviors of a bulk metallic glass studied via in-situ bending experiments with notched and un-notched specimens," Materials Science and Engineering: A, vol. 798, 2020, doi: 10.1016/j.msea.2020.140005.
[91] J. Pan, Y. X. Wang, and Y. Li, "Ductile fracture in notched bulk metallic glasses," Acta Materialia, vol. 136, pp. 126-133, 2017, doi: 10.1016/j.actamat.2017.06.048.
[92] Z. T. Wang, J. Pan, Y. Li, and C. A. Schuh, "Densification and strain hardening of a metallic glass under tension at room temperature," Physical Review Letters, vol. 111, no. 13, p. 135504, Sep 27 2013, doi: 10.1103/PhysRevLett.111.135504.
[93] J. X. Zhao, "Achieving the desirable compressive plasticity by installing notch cluster in metallic glass," Materials Science and Engineering: A, vol. 634, pp. 134-140, 2015, doi: 10.1016/j.msea.2015.03.057.
[94] R. T. Qu, S. J. Wu, S. G. Wang, X. D. Wang, and Z. F. Zhang, "Shear banding stability and fracture of metallic glass: Effect of external confinement," Journal of the Mechanics and Physics of Solids, vol. 138, 2020, doi: 10.1016/j.jmps.2020.103922.
[95] V. S. Saji, "Electrodeposition in bulk metallic glasses," Materialia, vol. 3, pp. 1-11, 2018, doi: 10.1016/j.mtla.2018.09.021.
[96] H. Y. Song, S. Li, M. R. An, Q. Deng, and Y. L. Li, "Effect of crystal phase on shear bands initiation and propagation behavior in metallic glass matrix composites," Computational Materials Science, vol. 150, pp. 42-46, 2018/07/01/ 2018, doi: https://doi.org/10.1016/j.commatsci.2018.03.069.
[97] G. H. Duan, M. Q. Jiang, X. F. Liu, L. H. Dai, and J. X. Li, "In-situ observations on shear-banding process during tension of a Zr-based bulk metallic glass composite with dendrites," Journal of Non-Crystalline Solids, vol. 565, p. 120841, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.jnoncrysol.2021.120841.
[98] D. Liu, Y. Li, Z. Zhu, H. Zhang, and W. Zha, "A strategy to design Ti-based in-situ bulk metallic glass composites containing controllable volume fraction and composition of the dendrite phase using conventional titanium alloy Ti–6Al–4V," Journal of Materials Research and Technology, vol. 18, pp. 1834-1841, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.jmrt.2022.03.076.
[99] D. Şopu, F. Moitzi, N. Mousseau, and J. Eckert, "An atomic-level perspective of shear band formation and interaction in monolithic metallic glasses," Applied Materials Today, vol. 21, p. 100828, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.apmt.2020.100828.
[100] L. Zhao, D. Han, S. Guan, X. Lu, K. Chan, and G. Wang, "Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding," Materials & Design, vol. 197, p. 109246, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matdes.2020.109246.
[101] Y. Tang, H. Zhou, H. Lu, X. Wang, Q. Cao, D. Zhang, W. Yang, and J.-Z. Jiang, "Extra plasticity governed by shear band deflection in gradient metallic glasses," Nature Communications, vol. 13, no. 1, p. 2120, 2022/04/19 2022, doi: 10.1038/s41467-022-29821-4.
[102] D. Şopu, S. Scudino, X. L. Bian, C. Gammer, and J. Eckert, "Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses," Scripta Materialia, vol. 178, pp. 57-61, 2020/03/15/ 2020, doi: https://doi.org/10.1016/j.scriptamat.2019.11.006.
[103] Z. D. Sha, L. C. He, Q. X. Pei, Z. S. Liu, Y. W. Zhang, and T. J. Wang, "The mechanical properties of a nanoglass/metallic glass/nanoglass sandwich structure," Scripta Materialia, vol. 83, pp. 37-40, 2014/07/15/ 2014, doi: https://doi.org/10.1016/j.scriptamat.2014.04.009.
[104] Z.-D. Sha, P. S. Branicio, H. P. Lee, and T. E. Tay, "Strong and ductile nanolaminate composites combining metallic glasses and nanoglasses," International Journal of Plasticity, vol. 90, pp. 231-241, 2017, doi: 10.1016/j.ijplas.2017.01.010.
[105] S. S. Hirmukhe, K. E. Prasad, and I. Singh, "Finite element analysis of tensile deformation of nanoglass-metallic glass laminate composites," Computational Materials Science, vol. 161, pp. 83-92, 2019, doi: 10.1016/j.commatsci.2019.01.031.
[106] S. Yuan and P. S. Branicio, "Tuning the mechanical properties of nanoglass-metallic glass composites with brick and mortar designs," Scripta Materialia, vol. 194, p. 113639, 2021/03/15/ 2021, doi: https://doi.org/10.1016/j.scriptamat.2020.113639.
[107] D. Şopu, A. Stukowski, M. Stoica, and S. Scudino, "Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses," Physical Review Letters, vol. 119, no. 19, p. 195503, 11/09/ 2017, doi: 10.1103/PhysRevLett.119.195503.
[108] D. Şopu, "STZ-Vortex model: The key to understand STZ percolation and shear banding in metallic glasses," Journal of Alloys and Compounds, vol. 960, 2023, doi: 10.1016/j.jallcom.2023.170585.
[109] H. Sheng, D. Şopu, S. Fellner, J. Eckert, and C. Gammer, "Mapping Shear Bands in Metallic Glasses: From Atomic Structure to Bulk Dynamics," Physical Review Letters, vol. 128, no. 24, p. 245501, 06/16/ 2022, doi: 10.1103/PhysRevLett.128.245501.
[110] D. P. Wang, B. A. Sun, X. R. Niu, Y. Yang, W. H. Wang, and C. T. Liu, "Mutual interaction of shear bands in metallic glasses," Intermetallics, vol. 85, pp. 48-53, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.intermet.2017.01.015.
[111] Y. Zhang, W. H. Wang, and A. L. Greer, "Making metallic glasses plastic by control of residual stress," Nature Materials, vol. 5, no. 11, pp. 857-860, 2006/11/01 2006, doi: 10.1038/nmat1758.
[112] K. K. Song, S. Pauly, Y. Zhang, S. Scudino, P. Gargarella, K. B. Surreddi, U. Kühn, and J. Eckert, "Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass," Intermetallics, vol. 19, no. 10, pp. 1394-1398, 2011, doi: 10.1016/j.intermet.2011.05.001.
[113] M. H. Lee, K. S. Lee, J. Das, J. Thomas, U. Kühn, and J. Eckert, "Improved plasticity of bulk metallic glasses upon cold rolling," Scripta Materialia, vol. 62, no. 9, pp. 678-681, 2010, doi: 10.1016/j.scriptamat.2010.01.024.
[114] S. Scudino, "Mechanism of shear banding during cold rolling of a bulk metallic glass," Journal of Alloys and Compounds, vol. 773, pp. 883-889, 2019, doi: 10.1016/j.jallcom.2018.09.302.
[115] S. Scudino, K. B. Surreddi, and J. Eckert, "Mechanical properties of cold‐rolled Zr60Ti5Ag5Cu12.5Ni10Al7.5 metallic glass," physica status solidi (a), vol. 207, no. 5, pp. 1118-1121, 2010, doi: 10.1002/pssa.200983366.
[116] S. Scudino and K. B. Surreddi, "Shear band morphology and fracture behavior of cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass under tensile loading," Journal of Alloys and Compounds, vol. 708, pp. 722-727, 2017, doi: 10.1016/j.jallcom.2017.03.015.
[117] B. Li, S. Scudino, B. Gludovatz, and J. J. Kruzic, "Role of pre-existing shear band morphology in controlling the fracture behavior of a Zr–Ti–Cu–Ni–Al bulk metallic glass," Materials Science and Engineering: A, vol. 786, 2020, doi: 10.1016/j.msea.2020.139396.
[118] Y. Chen and C. A. Schuh, "A coupled kinetic Monte Carlo–finite element mesoscale model for thermoelastic martensitic phase transformations in shape memory alloys," Acta Materialia, vol. 83, pp. 431-447, 2015, doi: 10.1016/j.actamat.2014.10.011.
[119] M. Daly, A. Kumar, C. V. Singh, and G. Hibbard, "On the competition between nucleation and thickening in deformation twinning of face-centered cubic metals," International Journal of Plasticity, vol. 130, 2020, doi: 10.1016/j.ijplas.2020.102702.
[120] X. Peng, N. Mathew, I. J. Beyerlein, E. Martinez, and A. Hunter, "A combined kinetic Monte Carlo and phase field approach to model thermally activated dislocation motion," Computational Materials Science, vol. 230, 2023, doi: 10.1016/j.commatsci.2023.112490.
[121] X. Wang, Y. Wang, W. Cai, and H. Xu, "Discovery of multimechanisms of screw dislocation interaction in bcc iron from open-ended saddle point searches," Physical Review Materials, vol. 6, no. 12, 2022, doi: 10.1103/PhysRevMaterials.6.123602.
[122] D. Rodney and C. Schuh, "Distribution of thermally activated plastic events in a flowing glass," Physical Review Letters, vol. 102, no. 23, p. 235503, Jun 12 2009, doi: 10.1103/PhysRevLett.102.235503.
[123] L. Li, N. Wang, and F. Yan, "Transient response in metallic glass deformation: A study based on shear transformation zone dynamics simulations," Scripta Materialia, vol. 80, pp. 25-28, 2014, doi: 10.1016/j.scriptamat.2014.02.005.
[124] E. R. Homer, "Examining the initial stages of shear localization in amorphous metals," Acta Materialia, vol. 63, pp. 44-53, 2014, doi: 10.1016/j.actamat.2013.09.050.
[125] F. Shimizu, S. Ogata, and J. Li, "Yield point of metallic glass," Acta Materialia, vol. 54, no. 16, pp. 4293-4298, 2006/09/01/ 2006, doi: https://doi.org/10.1016/j.actamat.2006.05.024.
[126] J. Pan, Q. Chen, L. Liu, and Y. Li, "Softening and dilatation in a single shear band," Acta Materialia, vol. 59, no. 13, pp. 5146-5158, 2011, doi: 10.1016/j.actamat.2011.04.047.
[127] P. Thamburaja, "Length scale effects on the shear localization process in metallic glasses: A theoretical and computational study," Journal of the Mechanics and Physics of Solids, vol. 59, no. 8, pp. 1552-1575, 2011, doi: 10.1016/j.jmps.2011.04.018.
[128] T. J. Hardin and E. R. Homer, "Microstructural factors of strain delocalization in model metallic glass matrix composites," Acta Materialia, vol. 83, pp. 203-215, 2015, doi: 10.1016/j.actamat.2014.09.043.
[129] E. Cadoni, J. C. Li, X. W. Chen, and F. L. Huang, "Deformation and failure of bulk metallic glasses under different initial temperatures," EPJ Web of Conferences, vol. 94, 2015, doi: 10.1051/epjconf/20159404017.
[130] J. C. Li, X. W. Chen, and F. L. Huang, "Inhomogeneous deformation in bulk metallic glasses: FEM analysis," Materials Science and Engineering: A, vol. 620, pp. 333-351, 2015, doi: 10.1016/j.msea.2014.10.013.
[131] J. C. Li, Q. Wei, X. W. Chen, and F. L. Huang, "On the mechanism of deformation and failure in bulk metallic glasses," Materials Science and Engineering: A, vol. 610, pp. 91-105, 2014, doi: 10.1016/j.msea.2014.04.106.
[132] W. Rao, J. Zhang, and G. Kang, "A failure mechanism based constitutive model for bulk metallic glass," Mechanics of Materials, vol. 125, pp. 52-69, 2018, doi: 10.1016/j.mechmat.2018.07.005.
[133] R. Maaß, K. Samwer, W. Arnold, and C. A. Volkert, "A single shear band in a metallic glass: Local core and wide soft zone," Applied Physics Letters, vol. 105, no. 17, 2014, doi: 10.1063/1.4900791.
[134] Y. Q. Cheng, A. J. Cao, and E. Ma, "Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition," Acta Materialia, vol. 57, no. 11, pp. 3253-3267, 2009, doi: 10.1016/j.actamat.2009.03.027.
[135] Z. Bian, M. X. Pan, Y. Zhang, and W. H. Wang, "Carbon-nanotube-reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass composites," Applied Physics Letters, vol. 81, no. 25, pp. 4739-4741, 2002, doi: 10.1063/1.1530371.
[136] J. L. Ma, H. Y. Song, J. Y. Wang, J. L. Dai, and Y. L. Li, "Influence of composition on the mechanical properties of metallic nanoglasses: Insights from molecular dynamics simulation," Journal of Applied Physics, vol. 128, no. 16, 2020, doi: 10.1063/5.0020999.
[137] M. Zhang, Q.-M. Li, J.-C. Zhang, G.-P. Zheng, and X.-Y. Wang, "The prominent combination of ultrahigh strength and superior tensile plasticity in Cu–Zr nanoglass connected by oxide interfaces: A molecular dynamics study," Journal of Alloys and Compounds, vol. 801, pp. 318-326, 2019, doi: 10.1016/j.jallcom.2019.06.097.
[138] N. Chen, D. V. Louzguine-Luzgin, G. Q. Xie, P. Sharma, J. H. Perepezko, M. Esashi, A. R. Yavari, and A. Inoue, "Structural investigation and mechanical properties of a representative of a new class of materials: nanograined metallic glasses," Nanotechnology, vol. 24, no. 4, p. 045610, 2013/01/08 2013, doi: 10.1088/0957-4484/24/4/045610.
[139] B. Cheng and J. R. Trelewicz, "Controlling interface structure in nanoglasses produced through hydrostatic compression of amorphous nanoparticles," Physical Review Materials, vol. 3, no. 3, 2019, doi: 10.1103/PhysRevMaterials.3.035602.
[140] M. Q. Jiang, W. H. Wang, and L. H. Dai, "Prediction of shear-band thickness in metallic glasses," Scripta Materialia, vol. 60, no. 11, pp. 1004-1007, 2009/06/01/ 2009, doi: https://doi.org/10.1016/j.scriptamat.2009.02.039.
[141] J.-Y. Kim, D. Jang, and J. R. Greer, "Nanolaminates Utilizing Size-Dependent Homogeneous Plasticity of Metallic Glasses," Advanced Functional Materials, vol. 21, no. 23, pp. 4550-4554, 2011, doi: https://doi.org/10.1002/adfm.201101164.
[142] C. X. Peng, D. Şopu, Y. Cheng, K. K. Song, S. H. Wang, J. Eckert, and L. Wang, "Deformation behavior of designed dual-phase CuZr metallic glasses," Materials & Design, vol. 168, 2019, doi: 10.1016/j.matdes.2019.107662.
[143] X. Zhou and C. Chen, "Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates," International Journal of Plasticity, vol. 80, pp. 75-85, 2016/05/01/ 2016, doi: https://doi.org/10.1016/j.ijplas.2016.01.003.
[144] F. F. Wu, Z. F. Zhang, S. X. Mao, and J. Eckert, "Effect of sample size on ductility of metallic glass," Philosophical Magazine Letters, vol. 89, no. 3, pp. 178-184, 2009/03/01 2009, doi: 10.1080/09500830902720917.
[145] R. T. Qu, S. J. Wu, S. G. Wang, X. D. Wang, and Z. F. Zhang, "Shear banding stability and fracture of metallic glass: Effect of external confinement," Journal of the Mechanics and Physics of Solids, vol. 138, p. 103922, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.jmps.2020.103922.
[146] Q.-K. Li and M. Li, "Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation," Applied Physics Letters, vol. 91, no. 23, 2007, doi: 10.1063/1.2821832.
[147] J. Zhang, M. Zhang, X. Wang, and M. Li, "Gradient network architecture design induced strain delocalization and delayed failure in metallic glass matrix composites," Scripta Materialia, vol. 237, p. 115721, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.scriptamat.2023.115721.
[148] Y. Chen, J.-C. Zhang, P. S. Branicio, and Z.-D. Sha, "Mechanical properties of heterogeneous metallic glasses: Insights from brick-and-mortar designs," Thin-Walled Structures, vol. 193, p. 111298, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.tws.2023.111298.
[149] M. I. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D. Yagodin, and P. Popel, "Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys," Philosophical Magazine, vol. 89, no. 11, pp. 967-987, 2009/04/11 2009, doi: 10.1080/14786430902832773.
[150] L. Wang, M. C. Liu, J. C. Huang, Y. Li, W. H. Wang, and T. G. Nieh, "Effect of temperature on the yield strength of a binary CuZr metallic glass: Stress-induced glass transition," Intermetallics, vol. 26, pp. 162-165, 2012/07/01/ 2012, doi: https://doi.org/10.1016/j.intermet.2012.01.031.
[151] F. Shimizu, S. Ogata, and J. Li, "Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations," Materials Transactions, vol. 48, no. 11, pp. 2923-2927, 2007, doi: 10.2320/matertrans.MJ200769.